

ЛЕКЦИЯ

«Производные карбоновых кислот»

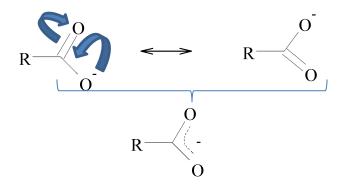
Лектор: старший преподаватель
Оренбургского государственного университета,
канд. хим. наук
Строганова Елена Алексеевна

Классы производных карбоновых кислот:

Функциональная	Класс	х кирооновых кисло Функциональная	Класс
группа		группа	
O	Соли кислот	—	Нитрилы
O D	Сложные эфиры	O	Галогенангидриды
О—R О NH2 первичные		Hal O O O	Ангидриды
О вторичн ые —	Амиды		Кетены
о N— третичные			

! Гидролиз любого производного карбоновой кислоты всегда ведет к образованию исходной карбоновой кислоты

Основная роль производных карбоновых кислот – ацилирование нуклеофилов.


Ацилирование = перенос катионов ацилия на нуклеофильную частицу

В целом, чем больше $\delta +$ на ацильном атоме углерода, тем легче процесс ацилирования.

По способности к реакциям ацилирования производные кислот распределяются в следующий ряд:

$$R = \begin{pmatrix} O & & O & & O & & O & & R & & O & & R & & O & & R & & & C & R & C & R & & C & R & & C & R & & C & R & & C & R & & C & R & & C &$$

I Соли карбоновых кислот

Распределение отрицательного заряда с атома кислорода за счет эффекта сопряжения гасит $\delta +$ ацильного атома углерода, что обусловливает слабую ацилирующую способность

Химические свойства

1) Реакция Гриньяра (превращение солей в третичные спирты)

2) Превращение солей в кетоны в реакции Гриньяра с ДХТФФ (дихлортрифенилфосфораном)

3) Превращение солей в галогенангидриды

4) Превращение солей Са, Ва, Тh, Мn в кетоны в процессе пиролиза

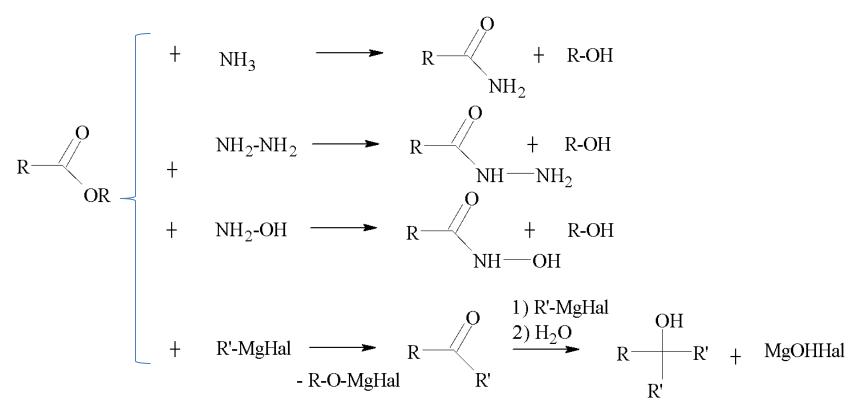
5) Реакция Хунсдиккера-Бородина

II Сложные эфиры

Методы получения

1) Реакция этерификации по Фишеру (получение сложных эфиров первичных спиртов)

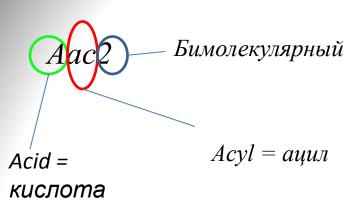
2) Получение сложных эфиров вторичных и третичных спиртов


Ацилирующий агент: галогенангидрид

3) Реакция Тищенко

$$R \xrightarrow{O} Al(Ot-Bu)_3 \qquad R \xrightarrow{O} R \xrightarrow{O}$$

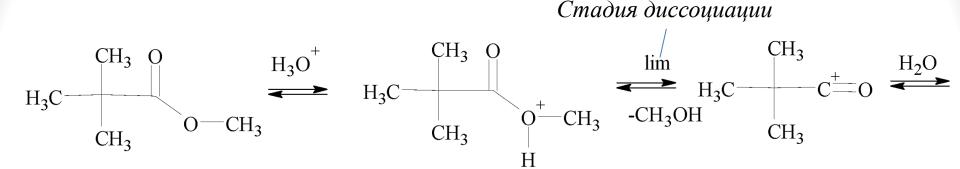
Химические свойства


1) Реакции ацилирования (Ad_N - S_N) сильных нуклеофилов

2) Гидролиз по Ингольду

Катализируется кислотами и основаниями. В зависимости от вида катализа различают следующие механизмы:

- -кислотный катализ: Aac2, Aac1, Aal1
- -Основный катализ: Bac2, Bal1, Bal2



Реализуется для стерически незатрудненных сложных эфиров

Реализуется для стерически затрудненных сложных эфиров (пространственное затруднение со стороны ацильной группы)

Мономолекулярный

Реализуется для стерически затрудненных сложных эфиров (пространственное затруднение со стороны алкокси-группы)

Расщепление по алкокси-группе

Стадия диссоциации

$$H_3C$$
 O
 CH_3
 H_3O^+
 H_3C
 O
 CH_3
 CH_3

Реализуется для стерически незатрудненных сложных эфиров

Basic = ocнoвный

Bal)1

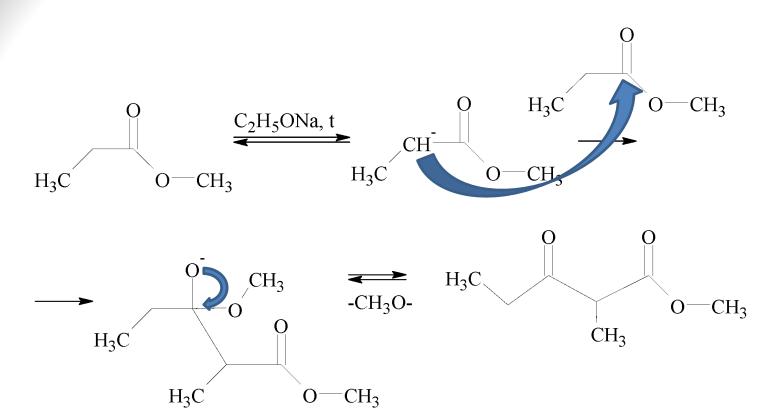
Реализуется для стерически затрудненных сложных эфиров (пространственное затруднение со стороны алкокси-группы)

Расщепление по алкокси-группе

Трет-

бутилпропионат

Bal2 Реализуется для стерически затрудненных сложных эфиров (пространственное затруднение со стороны ацильной группы)


Метил-неовалерат

3) Реакция переэтерификации

Протекает до конца в случае замещения более сильным нуклеофилом более слабый

4) Сложноэфирная конденсация

Сложные эфиры уступают альдегидам и кетонам как СН-кислоты на 5-8 порядков. Стенерировать енольную форму из сложного эфира <u>с помощью кислотного</u> катализа нельзя. Исследуя процессы конденсации Кляйзен в 1887 году установил, что наилучшим конденсирующим агентом является этилат натрия (сегодня применяют различные алкоголяты, либо гидриды натрия, либо металлический натрий в среде бензола). Кляйзен установил схему конденсации, отсюда название «конденсация Кляйзена»

5) Ацилоиновая конденсация

Соотношение эфир : натрий = 1 : 2

Механизм :
$$R = C$$
 $O = R$ $R = C$ $O = R$

- 6) Восстановление сложных эфиров
 - а) Восстановление по Буво-Блану

Условия проведения реакции похожи на ацилоиновую конденсацию, но для восстановление требуется избыток натрия и среда – этиловый спирт

 δ) Восстановление с $Li[AlH_{\perp}]$

$$R \xrightarrow{O} \begin{array}{c} 1) \operatorname{Li}[\operatorname{AlH_4}] \\ 2) \operatorname{H_2Q} \\ O \xrightarrow{-R'} \end{array} \qquad R \xrightarrow{-\operatorname{CH_2-OH}} \begin{array}{c} + & \operatorname{R'-OH} + & \operatorname{LiOH} + & \operatorname{Al(OH)_3} \end{array}$$

III Амиды

Методы получения

1) Термическая дегидратация аммонийных солей карбоновых кислот

$$R \xrightarrow{O} R \xrightarrow{V} R \xrightarrow{V} H_2O$$

$$NH_4 \xrightarrow{F} NH_2$$

2) Ацилирование аммиака, первичных и вторичных аминов ангидридами или галогенангидридами

3) Гидролиз нитрилов

$$R-C\equiv_N + H_2O \xrightarrow{[H^+],t} R-C\equiv_{NH} \rightleftharpoons R \xrightarrow{O}$$

Химические свойства

1) Гидролиз

Процесс обратимый. Катализируется кислотами и основаниями. Требует более жестких условий, чем гидролиз сложных эфиров. Осуществляется по механизмам Aac2 или Bac2.

а) Кислотный гидролиз

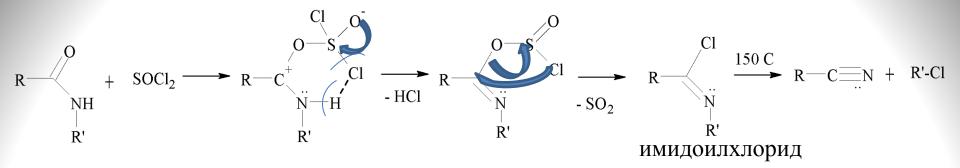
Условия: 50 % H2SO4, t, длительно

$$R \xrightarrow{O} H_2SO_4 \xrightarrow{[H_2O],t} R \xrightarrow{O} H_2O R \xrightarrow{OH} NH_3^+HSO_4 \xrightarrow{C} R \xrightarrow{OH} NH_4^+HSO_4 \xrightarrow{OH} NH_4^-HSO_4 \xrightarrow{OH} NH_4^-HSO_4 \xrightarrow{OH} NH_5^-HSO_4 \xrightarrow{OH} NH_5^-HSO_5 \xrightarrow{OH} NH_5^-HSO_$$

б) Основный гидролиз

Условия: 60 % KOH, 100 C

$$R \xrightarrow{O} KOH, 100 C R \xrightarrow{O} RH_2 R \xrightarrow{O} R^+ + NH_3$$


$$O = KOH, 100 C R \xrightarrow{O} R$$

2) Реакция Гриньяра

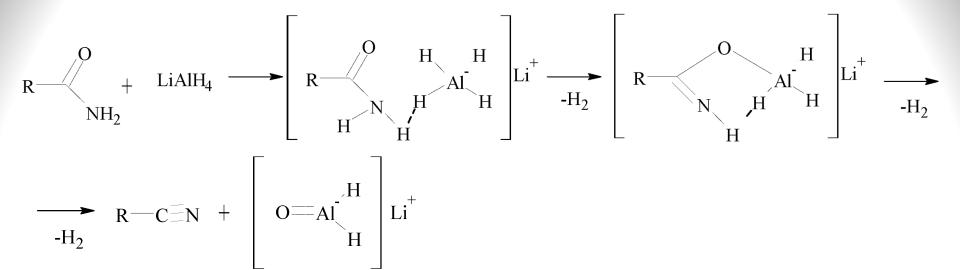
3) Дегидратация под действием POCl₃ или SOCl₂

$$R \xrightarrow{O} + SOCl_2 \xrightarrow{R} R \xrightarrow{Cl} R \xrightarrow{Cl} R \xrightarrow{R} R \xrightarrow{Cl} R \xrightarrow{R} R \xrightarrow{Cl} R \xrightarrow{R} R \xrightarrow$$

Вторичные амиды образуют устойчивые *имидоилхлориды*, распадающиеся на нитрил и алкилгалогенид при температурах более 150 С:

4) Нитрозирование

Условия: NaNO,, HCl


Эта реакция является *качественной на первичные амиды* (происходит диазотирование с последующим отщеплением N_2).

Вторичные амиды образуют N-нитрозоамиды.

5) Взаимодействие с гипогалогенитами первичных амидов (перегруппировка Гофмана)

$$R \longrightarrow 0$$
 $+$ $Br_2 + NaOH$ $NH_2 \longrightarrow 0$ $NH_2 \longrightarrow$

6) Восстановление с $Li[AlH_4]$

IV Нитрилы

Методы получения

1) S_N при взаимодействии алкилгалогенидов с цианидом калия

$$R^-CH_2^-Br + KCN \longrightarrow R^-CH_2^-CN + KBr$$

2) Дегидратация оксимов

$$\begin{array}{ccc}
R^{-}CH & \xrightarrow{P_2O_5} & R^{-}CN \\
& & \xrightarrow{-H_2P_2O_6} & \end{array}$$

3) Дегидратация амидов

$$R \xrightarrow{O} \frac{P_2O_5}{P_2O_6} R^{-CN}$$

$$NH_2 -H_2P_2O_6$$

4) Реакция Зандмейера (синтез ароматических нитрилов)

Химические свойства

1) Гидролиз

Процесс обратимый. Катализируется кислотами и основаниями. Требует еще более жестких условий, чем гидролиз амидов и многочасового прогревания.

а) Кислотный гидролиз

Условия: 75 % $H_{\gamma}SO_{A}$, t, длительно

б) Основный гидролиз Условия: 60 % KOH, 100 C

$$R-C \equiv N \xrightarrow{\text{KOH, 100 C [ýòèëåíãëèêîëü]}} R-C = N \xrightarrow{\text{HO-CH}_2\text{-CH}_2\text{-OH}} R-C = NH \xrightarrow{\text{OH}} R-C =$$

2) Реакция Гриньяра

$$R - C = N + R' - Mg - Br \xrightarrow{[\circ \circ \circ \circ]} R - C = N - Mg - Br \xrightarrow{H_2O} R - C = NH \xrightarrow{H_2O} R'$$

$$R' - MgOHBr \xrightarrow{R'} R'$$

$$R' - NH_3$$

$$R' - NH_3$$

$$R' - NH_3$$

3) Восстановление с Li[AlH₄]

$$2 R-C = N + LiAlH_4 \longrightarrow \left[R-CH_2-N=Al = N-CH_2-R \right] Li^{+} \xrightarrow{H_2O} 2 R-CH_2-NH_2 + LiOH + Al(OH)_3$$

V Ангидриды

Методы получения

1) Ацилирование карбоновых кислот и их солей галогенангидридами

2) Ацилирование карбоновых кислот кетенами

Химические свойства

1) Ацилирование нуклеофилов

Для взаимодействия со слабыми нуклеофилами требуется активация минеральными кислотами (создается слабо кислая среда)

Ацетилформиа: формилацетат

2) Гидролиз

Ацетилбутаноат = бутаноилацетат

V Галогенангидриды

Методы получения

1) Галогенирование карбоновых кислот галогенирующими агентами

Галогенирующие агенты: PCl₅, PCl₃, PBr₅, PBr₃, SOCl₂

2) Гидрогалогенирование кетенов

$$H_3C$$
 $C = C = O + HCl$
 H_3C
 $C = C - OH$
 H_3C
 $C = C - OH$
 $C =$

Химические свойства

1) Ацилирование нуклеофилов

Галогенангидриды – самые сильные ацилирующие агенты после кетенов, поэтому при взаимодействии с любыми нуклеофилами активация не нужна.

2) Восстановление по Розенмунду

$$R \xrightarrow{O} + H_2 \xrightarrow{Pd/Ba_2^+ (\tilde{o} \tilde{e} \tilde{i} \tilde{e} \tilde{e} \tilde{i})} R \xrightarrow{O} + HC1$$