Болезни эмбрионов сельскохозяйственной птицы

Рязанов Игорь Геннадьевич кандидат сельскохозяйственных наук

ПЛАН ЛЕКЦИИ

- Общие сведения об эмбриональной патологии
- Болезни обусловленные нарушениями обмена веществ у птиц родительского стада
- Неправильное хранение и транспортировка яиц
- Нарушения режима инкубации
- Инфекционные болезни эмбрионов:
- болезни вирусной этиологии
- болезни бактериальной этиологии
- - МИКОЗЫ
- эмбриотоксикозы

- Инкубация- специфический раздел птицеводства от которого зависит получение жизнеспособного молодняка и последующие результаты выращивания.
- Нормы вывода составляют: 85% для яичных кур; 80% для мясных; 78% -для уток; -75% для гусей и индеек.
- Фактически показатели часто колеблятся в пределах 85- 60% и ниже.
- В хозяйствах с пониженной выводимостью яиц наблюдается увеличение гибели молодняка в первые дни жизни вследствие снижения естественной резистентности.
- Выход здорового молодняка от числа заложенных яиц составляет 74%.

- Болезни эмбрионов приводят не только к их гибели, но и к значительному увеличению количества слабого, некондиционного молодняка, подлежащего уничтожению.
- Понижается жизнеспособность внешне здоровых цыплят. Птица, переболевшая в эмбриональный период, хуже растет и развивается, часто не в состоянии проявить в дальнейшем хорошую мясную или яичную продуктивность.
- Ряд инфекционных болезней птиц передается через яйцо, поэтому суточный цыпленок носитель инфекции может стать виновником эпиизоотической вспышки и у молодняка и во взрослом стаде.

- Основные причины заболеваний эмбрионов:
- нарушения режимов инкубации;
- низкое качество инкубационных яиц обусловленное неправильной или недостаточной селекционно-племенной работой, неполноценным кормлением родительского поголовья, нарушением необходимых условий при сборе, транспортировке и хранению яиц;
- несоблюдение зоогигиенических требований;
- болезни репродуктивных органов;
- общие болезни поголовья любой этиологии.

- Основным критерием оценки состояния проблемы болезней эмбрионов является показатель выводимости т.е. количество молодняка в %, полученного из заложенных на инкубацию яиц.
- В норме этот показатель достаточно высокий и колеблется от 82 до 86%.
- Причинами низкой выводимости и высокого постэмбрионального отхода являются различные нарушения обмена веществ, вызванные, неполноценным кормлением родительского поголовья, игнорирование правил сбора, транспортировки и хранения яиц. Крайне отрицательно влияют на показатели выводимости и последующей сохранности цыплят любые отклонения от режима инкубации, инфекционные болезни, токсикозы.
- По данным официальной статистики постэмбриональный отход составляет 8,5% от общего падежа птицы, что обусловлено низкой жизнеспособность выведенного молодняка.

- При низкой выводимости необходимо оперативно устанавливать и устранять вызвавшие ее причины, для чего в хозяйстве необходимо проводить мониторинг эмбриональной смертности и систематически анализировать результаты биологического контроля инкубации.
- Болезни эмбрионов изучены недостаточно, но уже описаны многие аномалии развития и их основные признаки, определены нозологические группы, что позволяет достаточно точно устанавливать и дифференцировать причины эмбриональных патологи.

Признаки, характеризующие возраст эмбриона

Признаки	Возраст в днях			
	куры	утки	гуси	индейки
1. Появление кровеносных сосудов и	2	2	2	2
проамниона				
2. Начало пигментации глаза и	3	4	5	5
появление зачатков конечностей				
3. Хорошо заметен аллантоис	3	5	5	5
4. Появление рта	7	7	8	7
5. Срастание фаланг крыла	9	9	10	
6. Появление зачатков перьев на	9	11	12	9
спине				H. C.
7. Оформление клюва	10	11	12	10
8. Появление перьевых сосочков на	11	13	14	10
крыльях				
9. Замыкание аллантоиса	10-11	13	14	13
10. Веко достигает зрачка; пух на	13	14-15	15	14
голове				
11. Весь эмбрион покрыт пухом	14	15	18	17
12. Веко закрыто	15	18	23	18
13. Полное использование белка	16	21	22	20
14. Начало втягивания желтка	19	23	24	23
15. Желток втянут	20	26-27	28	24
16. Проклев	20	26-27	28-29	26

- Важно помнить, что показатель выводимости яиц не всегда совпадает с постэмбриональной жизнеспособностью.
- При выводимости 85% отходы инкубации составляют:
- 7-10% -неоплодотворенные яйца;
- 2-3%-кровяное кольцо;
- 2-3%-замершие;
- 4-5%-задохлики;
- 2%- слабые и калеки.
- Норма выбраковки суточного молодняка -3%, фактически-8-15%.

- Систематическая, своевременная и правильная диагностика
 эмбриональной смертности позволяет не только выявить причины низкой выводимости, но и дает возможность ветврачу контролировать состояние родительских стад.
- Например: ранние стадии гиповитаминозов у взрослой птицы не проявляются клинически, но витаминная недостаточность немедленно сказывается на качестве яиц, вызывая характерные нарушения в эмбриональном развитии.

Болезни обусловленные нарушениями обмена веществ у птиц родительского стада

- Многие болезни эмбрионов, развиваются вследствие недостатка или избытка витаминов, нарушениях белкового или минерального обменов, токсикозов у птиц родительского стада.
- Патологические изменения эмбрионов, возникающие при нарушениях обмена веществ называют эмбриональными дистрофиями.
- Общие признаки: Зародыши отстают в росте, телосложение их непропорциональное укороченные ноги и расширенная голова. Кости конечностей кривые с утолщенными, деформированными суставами. Искривлен шейный отдел позвоночника. Сильно отекает кожа и слабо развивается оперение.

- Белок и желток плохо используются. Желток густой, мажущийся, в амнионе,
 вязкая, клейкая жидкость.
- Патологические изменения внутренних органов перерождение печени, хрящей, мышц, отложение солей.
- Смертность эмбрионов повышается особенно в середине инкубации, (у кур с 10-11 дня).
- Кривая эмбриональной смертности приобретает своеобразную конфигурацию с наличием 3-го подъема в середине инкубации.
- Выводимость снижается иногда до 10-15%...

Недостаток - витамина В7 (биотина)

- Является наиболее часто встречающейся причиной эмбриональных дистрофий.
 - Нормальное содержание биотина в яйце около 10,8мкг (8,5мкг в желтке).
- При уменьшении его количества до 0,8 мкг— снижается выводимости до 0.
- Признаки абиотиноза хондродистрофия.
- Укорочена плюсна, череп расширен, нижняя челюсть недоразвита, верхняя загнута книзу «попугаев клюв». Часто задержка в росте, кровоизлияния в теле и аллантоисной оболочке. Искривление ног, деформация суставов
- Плохо используется белок.
- Смертность повышается во второй половине инкубации (15-16 дн.)
 и на выводе.

Недостаток витаминаВЗ (пантотеновая кислота).

- В 1г инкубационного яйца должно быть не менее 9,5 мкг витамина В3, поступающего из рациона несушек. Потому гибель эмбрионов напрямую зависит от его концентрации в корме.
- при полном отсутствии пантотеновой кислоты эмбриональная смертность составляет 96,7%, при содержании 3,0 мкг/г погибает около 20 % эмбрионов.
- Характерные признаки: короткая нижняя челюсть, гидроцефалия, помутнение глаз, расширение сердца, отеки, кровоизлияния под кожей, жировая инфильтрация печени.

Недостаток витамина В2 (гипорибофлавиноз)

- Норма не ниже 4 мкг/г в желтке и 2-3 мкг/г в белке. При полном отсутствии В2 эмбриональная смертность составляет 100%, при содержании 2,3% -29%.
- Эмбриональная смертность нарастает после 12-13 дня инкубации.
- Признаки: задерживается рост эмбриона. Ноги короткие, суставы деформированы. Очень часто- гидроцефалия (отек мозговых оболочек).
- Недоразвитие перьевых сосочков- «курчавость», аптериоз.
- Часто повышается вязкость амниотической жидкости, желток окрашивается неравномерно.
- В почках мочекислые соли.
- Молодняк с дефектами конечностей, оперения, параличи ног и шеи, перозис.

Неравномерное окрашивание желтка

«Курчавость»,

Недостаток витамина В9 (фолиевая кислота, витамин Вс)

- С 12 дня наблюдается задержка роста змбрионов. У них недорозвита нижняя челюсть (или отсутствует) что приводит к появлению «попугаевого клюва».
- Смертность в основном при вылуплении.
- Искривление шеи, большой берцовой кости и плюсны. Иногда срастаются пальцы (синдактилия). Размеры глаз уменьшены.
- Указанные аномалии иногда сопровождаются выпадением

Недостаток витамина В12 (цианокобаламин)

- Витамин В12 синтезируется
 микрофлорой толстого кишечника.
- При напольном содержании
 потребность удовлетворяется за
 счет копрофагии. При клеточном- за
 счет кормов.
- Гибель эмбрионов на 16 17 день инкубации. Характерные признаки: «миоатрофия ног» (ноги выглядят тонкими, проволокообразными).
- Кровоизлияния на теле,
 конечностях, во внутренних органах,
 мозге.
- Жировая инфильтрация и участки некроза в печени.
- У погибших эмбрионов голова опущена вниз, находится между ног.

Недостаток витамина Д (кальциферол).

- Недостаток витамина Д отражается прежде всего на качестве скорлупы (от уменьшения толщины до бесскорлупных яиц и прекращения яйцекладки).
- Форма дистрофии зародыша получила название
 «эмбриональной микседемы». Для нее характерна общая
 отечность эмбрионов, отеки на спине, боках, верхней трети
 шеи.
- Эмбрионы отстают в росте и развитии, конечности искривлены.
- Перерождение печени (печень серого цвет, анемичная, крошится при сдавливании, жировая инфильтрация).

гидроцефа

Гиповитаминоз А (ретинол)

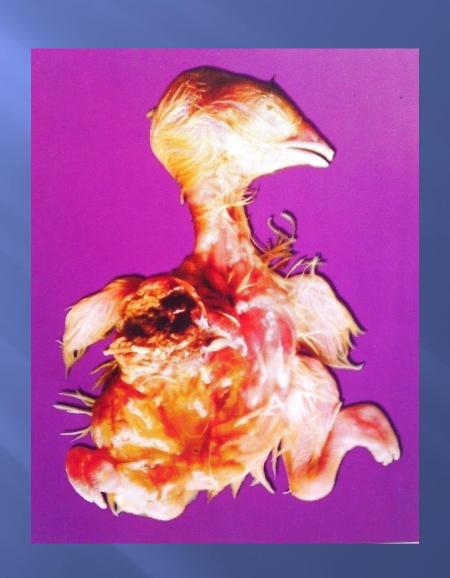
- При большом дефиците витамина А яйца выглядят как неоплодотворенные, по причине гибели эмбрионов еще на ранних стадиях развития (дегенеративные изменения в зародышевом диске, распад и лизис бластомеров).
- При содержании в рационе витамина А 30 мг/кг- гибнет 100% зародышей, при увеличении до 450 мг/кг – гибель составляет не более 10%.
- Рост и развитие эмбрионов замедляется, признаки дистрофии, повышено количество кровяных колец, обесцвечивается желток.
- Вывод запаздывает. Суточный молодняк слабый, с плохой пигментацией пуже. Характерны конъюнктивиты, выделение слизи из носовых отверстий.
- Высокий отход в первые дни за счет низкой резистентности,
 повышена восприимчивость к инфекционным болезням.

Недостаток витамина Е (атокоферолоз).

- Наиболее подвержены Е гиповитаминозу эмбрионы индеек.
 Наблюдается повышенная смертность в первые 7 дней развития и в конце срока инкубации, вследствие недостаточного развития кровеносной системы.
- Характерны: дистрофия, помутнение хрусталика,
 кровоизлияния в стекловидное тело и желточный мешок, пятна на роговице, низкое содержание гемоглобина в эритроцитах.
- Выведенные цыплята малоподвижны с плохо развитой мускулатурой, атонией желудка и кишечника, наличием эрозий на кутикуле. Часто бывает слепота, парезы и параличи.

Недостаток витамина К

- Массовая гибель эмбрионов на выводе из-за повреждения аллантоисных сосудов и низкой свертываемости крови.
- Кровь не свертывается и стекает на скорлупу.
- Эмбрион (цыпленок) полностью или частично обескровлен.
- в Внутренние органы анемичны и недоразвиты.


Недостаток линолевой кислоты.

- Недостаточность в рационах родителей непредельных (ненасыщенных) жирных кислот приводит к 100% гибели зародышей.
- При этом 39% эмбрионов гибнет на ранней стадии развития.
- Повышение смертности наблюдается до 4 дня и между 20 и 22 днем инкубации при небольшом увеличении на 14 день.
- Характерно неправильное положение эмбрионов перед вылуплением – голова поверх правого крыла.

Кутикулит.

- Наблюдается у эмбрионов последних дней инкубации и у вылупившихся цыплят.
- Воспалена кутикула мышечного желудка с кровоизлияниями и глубокими язвенно-некротическими поражениями, трещинами и эрозиями.
- Кутикула легко отделяется от стенок из-за разрыхления подслизистого слоя.
- Причина недостаток комплекса витаминов A, C и К усугубленный нарушениями режима инкубации.
- Большой отход цыплят в первые дни жизни из-за расстройства пищеварения.


Перозис.

- Расслабление связок и сухожилий конечностей.
- Характерный признак молодняк передвигается на плюсневых суставах.
- Причины недостаток в рационах родителей марганца, цинка, онаххолина.
- Избыток фосфора и Са.

Подагрическая дистрофия

- Встречается как в комплексе с другими патологиями, так и у нормально развитых эмбрионов.
- Характеризуется отложением мочекислых солей в тканях и органах (нефрозо-нефрит), на желточной оболочке, в полости аллантоиса, почках, мочеточниках и даже клоаке.
- Причины возникновения:
- избыток белка в рационе, в основном низкого качества, на фоне авитаминоза А;
- неправильное энерго-протеиновое отношение в рационе;
- непропорциональное соотношение витаминов.

Аминокислотная недостаточность

- Дефицит метионина, триптофана, аргинина.
- Увеличивается эмбриональная смертность на 2-й неделе инкубации, до 11 дня.
- У погибших эмбрионов недоразвитие оперения.
- При недостатке тирозина депигментация сетчатки, дегенерация зрительных нервов.
- Причины недостаток в рационе белков животного происхождения.

Нарушения минерального обмена

- Са, Р рахит, остеомаляция и т.д.
- Йод задерживается вывод цыплят на несколько дней. У эмбрионов увеличена щитовидная железа.
- Цинк- неправильное развитие туловища у эмбрионов, искривление позвоночника, тазовых костей. Сращивание ног, отсутствие пальцев. Наблюдаются грыжи головного мозга, общая отечность.
- Марганец- при выводе нервный тремор, затрудненное дыхание, конвульсии

Болезни обусловленные неправильным хранением и транспортировкой яиц

- Транспортировка яиц должна проводиться с соблюдением условий, предупреждающих нарушение биофизиологического состояния их коллоидной среды и сохранении целостности скорлупы.
- При нарушении этих условий возникают патологические изменения, ведущие к снижению инкубационных качеств яиц или к полной их утрате:
- смещаются слои плотного и жидкого белка,
- ослабевают и обрываются градинки,
- нарушается элластичность подскорлупных оболочек
- В результате желток с бластодиском всплывает к скорлупе, нарушается начальный процесс эмбриогенеза, зародыш прилипает к подскорлупным оболочкам, что приводит к массовой гибели в первые часы инкубации.

- Замораживание и последующее оттаивание губительно действуют на зародыш. Определить это можно сварив несколько яиц: — желток теряет шарообразную форму, т.к. разрушена желточная оболочка.
- При очень длительном хранение даже в хороших условиях белок разжижается, смешивается с желтком, плотный слой которого меняет структуру. Желток всплывает, соприкасается с подскорлупной оболочкой, механически травмируется.
- Характерный признак длительно хранившихся яиц аморфоз.
 Зародыш в виде бесформенного комка темно-серого цвета расположен на внутренней поверхности подскорлупной оболочки.
 Такие изменения отмечены при хранении яиц более 20 суток.

- Норма хранения инкубационных яиц до 5 суток.
- В таком случае выводимость может составлять 87,5%. При хранении до 15 дней 73,5%, до 20дней 47%, до 25 дней 6%.
- Для диагностики сварить яйцо.
- У свежих подскорлупная оболочка тесно связана с белком. У длительно хранившихся яиц нарушена конфигурация желтка, бесформенный бластодиск (Бластоматоз).

Нарушение режима инкубации

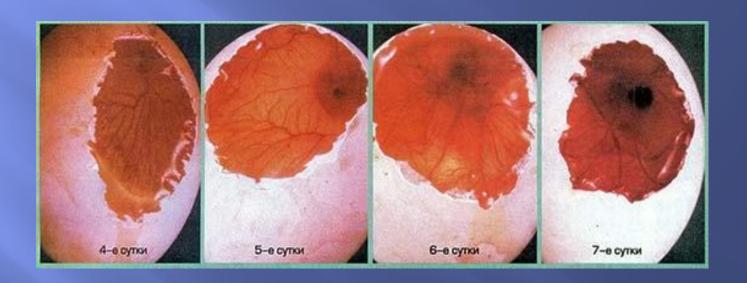
- Самое большое значение имеют температура, влажность и СО2. Но важны и токсические газы (сероводород, пары формальдегида), лучистая энергия.
- Наиболее опасен перегрев.
- При естественном высиживании перегрев произойти не может и эмбрионы птиц в процессе эволюции к нему не приспособились.

Острая гипертермия

- При нагреве до 50°С эмбрионы остаются живыми не более 60 – 80мин.
- Характерны кровоизлияния в коже, головном мозге, сердце, желточном мешке.
- Сосуды аллантоиса расширены и переполнены кровью.

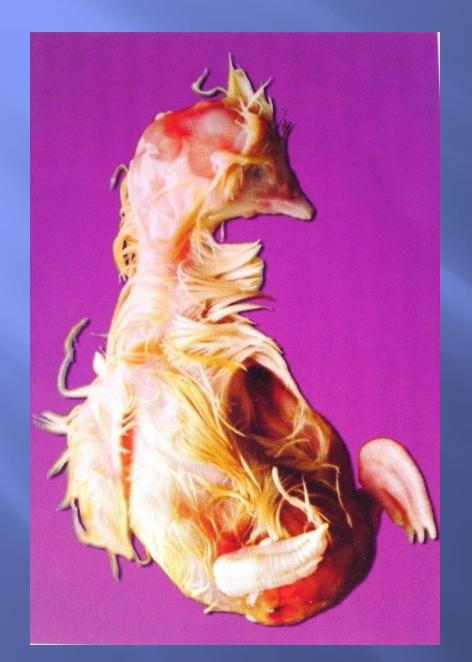
- Гипертермия в начале инкубации.
- Стимулирует рост и развитие эмбрионов в первую половину инкубации, но задерживает во второй.
- Зародыш в первые дни выглядит старше своего фактического возраста.
- Перегрев в 1-2 день аморфоз. Зародыш представляет бесформенную массу. Заметно интенсивное разрастание сосудов. Погибший эмбрион окружен крупными кровяными островками.
- Если эмбрион выживает велик % уродств головы вследствие слипания, образования спаек между мозговыми и глазными пузырями, подскорлупной оболочкой. Это не единственная причина таких уродств, но значимая.

- Перегрев на 3-4 день —другое специфическое уродство эктопия. Внутренние органы выпячиваются наружу, брюшная стенка не зарастает.
- Такие эмбрионы продолжают развиваться, но гибнут при вылуплении.
- При овоскопии перегрев в первую половину инкубации яиц характеризуется неравномерностью эмбрионального развития. Наблюдается акрания, кровоизлияния во внутренних органах.
- Много эмбрионов погибших в первую неделю с признаками кровяного кольца.



- Гипертермия во второй половине инкубации.
- За счет снижения потребления кислорода уменьшается количество аллантоисной жидкости. Замедляется использование белка и желтка.
- На вскрытии изменение пропорции органов:
 уменьшены размеры сердца и печени, увеличены почки.
- Наклев начинается раньше, но вывод затянут. (проблемы с профилактикой болезни Марека).

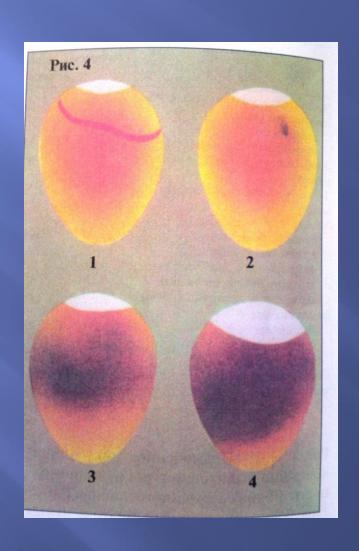
- Цыплята мелкие, наиболее типичный патологический признак большой размер не втянутого желточного мешка, его гиперемия, неправильное расположение головы и ног, гиперемия кожи. Печень темно-красная, переполнена кровью.
- В конце инкубации яйца выделяют большое количество тепла и, при неправильном регулировании температуры (повышении) возникает температурный шок паралич сердца, гиперемии, обширные кровоизлияния.


Гипотермия.

- Не так опасна как гипертермия. Снижение температуры до 20-21°С в течение нескольких часов эмбрионы переносят без последствий.
- Но, в любом случае гипотермия приводит к замедлению роста и развития эмбриона.
- В зависимости от степени недогрева, последствия бывают разные.
- При длительном снижении температуре до 20 -21°C
 эмбрион гибнет на первых стадиях развития при наличии очень сильных уродств.
- При температуре 27 30°C развитие продолжается до более поздней стадий, но зародыши также гибнут.
- □ Эмбрионы выживают до конца инкубации лишь при температуре не ниже 35,5°C.

- При температуре 35 36°C наблюдается увеличение смертности эмбрионов на 2-3 день инкубации, затем она повышается с 6 по 16 день, с пиками на 7-8 и 15-16 день. Во всех случаях наибольшее количество эмбрионов гибнет перед выводом.
- Типичные признаки отсутствуют. В основном регистрируют общее недоразвитие.
- При овоскопии во время перевода на вывод отмечается неподготовленность эмбрионов к вылуплению: — они незрелые, граница пуги ровная, видны наполненные кровью сосуды аллантоиса. В остром конце яйца просвечивается белок.
- Сердце значительно увеличено уже с 15 дня инкубации.

- В конце инкубации отеки в области пупочного кольца, кровоизлияния в подкожную жировую клетчатку, увеличение прямой кишки.
- У вылупившихся цыплят: сильно увеличен желчный пузырь, повышена секреция желчи желток и содержимое кишечника окрашены в зеленый цвет
- Слизистые отеки подкожной клетчатки шеи и головы.



Гипергидрозы.

- Очень высокая относ влажность 70-80% при норме 55-60% приводит к замедлению роста и развития зародыша.
- Смертность повышается в основном в последний критический период.
- Вывод запаздывает и очень растянут. Цыплята вялые, с белесым, слипшимся пухом, с большими раздутыми животами.
- У задохликов в месте проклева выделяется слизь, которая высыхая заклеивает им клюв и эмбрион гибнет.
- Характерный признак: переполнен влагой ЖКТ(зоб, желудки, кишечник раздуты от воды и слизи).
- Высокая влажность способствует развитию плесени увеличивается
 % яиц пораженных микозами т.н. *тумаков*.

Гипогидрозы – недостаток воды

Свежее куриное яйцо содержит около 74% воды. До инубации и во время ее яйцо не усваивает влагу из внешней среды.

- Эмбрион испаряет воду находящуюся в белке и желтке, а также образующуюся в результате окисления органических веществ.
- За период инкубации куриные и индюшиные яйца теряют 11-13% массы, утиные до 15%, гусиные до 12%, главным образом за счет испарения влаги.
- Гипогидроз образуется при механических повреждениях скорлупы, при тонкой и пористой скорлупе, при низкой относительной влажности окружающего воздуха.
- Низкая относительная влажность окружающего воздуха особенно губительна при повышенной температуре.
- Отмечается повышенная потеря массы яйца, увеличение размера воздушной камеры.

Наклев скорлупы часто бывает ближе к экваториальной части яйца. Скорлупа сухая, иногда со следами кровоизлияний. Подскорлупные оболочки очень плотные, ссохшиеся.

У задохликов часто наблюдается полное отсутствие околоплодных жидкостей, сухой пух, относительно вязкий желток.

Наблюдается ранний вывод по причине кислородного голодания. Цыплята мелкие, с сухим желтоватым пухом, несколько напоминающие перегретых.

Гипоксии и асфиксии.

- Недостаток кислорода (норма 21%) зародыши переносят тем хуже, чем они старше.
- Например, при экспериментальном снижении содержания кислорода в течение 3-5час до 3-5% смертность у 2-х дневных составляет 10,3%, у 3-х дневных 72,6%, у 4-5-и дневных 74,8%.
- Гипоксия вызывает в основном уродства, наиболее характерна карликовость.
- Хроническое повышение содержания углекислого газа в окружающем воздухе до 0,2% вызывает следующую патологию: к концу эмбрионального развития зародыши принимают неправильное положение. Голова направлена в острый конец яйца, ноги к воздушной камере, с закрученной вокруг шеи желточной ножкой. Следствие проклев скорлупы на экваторе или с острого конца.
- Формальдегидин токсичен для эмбрионов особенно на 3-4 сутки инкубации. Характерный признак отек легких.

- □ Перемещении яиц во время инкубации.
- При редком поворачивании в первые дни инкубации происходит прилипание бластодермы к подскорлупным оболочкам – амнион не образуется.
- На более поздних стадиях это может привести к тому, что белок не перемещается в амнион и остается неиспользованным.
- Отсюда патологии от недостатка питательных веществ.

Инфекционные болезни эмбрионов

- Инфекционные болезни эмбрионов составляют приблизительно 15% от их общей заболеваемости.
- Заражение эмбриона происходит на любой стадии образования яйца (эндогенное зараже ме) или во время снесения и последующих технологических операций с яйцами (экзогенное заражение).
- Масштабы эндогенногое заражения могут быть и незначительными, но оно представляет реальную угрозу заноса инфекции в благополучные хозяйства.
- Многие возбудители инфекционных болезней передающихся через яйцо, не вызывают значительной эмбриональной смертности, но обусловливают развитие патологий на постэмбриональной стадии при выращивании молодняка или уже у взрослой птицы.

- До настоящего времени не известно, в каком состоянии находится возбудитель после снесения яйца, т.к. яйцо и его оболочки обладают сильным бактериостатическим, а, в ряде случаев и бактерицидным действием.
- К механизмам защиты эмбриона от микробов и вирусов следует отнести такие неспецифические факторы как лизоцим, бактериолизины, и гемолизины. Желточные оболочки также служит барьером на пути микроорганизмов.
- Поэтому большинство инфекций можно выявить у эмбрионов только непосредственно перед выводом в период активного использования веществ желтка.
- Выявлена общая закономерность: инфекционные заболевания тем опаснее для эмбриона, чем раньше он ими заражается. (то есть по мере формирования эмбриона, развиваются и его механизмы иммунитета).

в Вирусный гепатит утят.

- Возбудитель находится в желтке яиц. Птица не имеет клинических признаков ВГУ.
- Снижается выводимость, гибнет до 50% эмбрионов в различные периоды инкубации.
- Характерные патологоанатомические признаки появляются на 10-15 день:
- массовые точечные кровоизлияния на голове, конечностях, перьевых сосочках, отечность.
- -в конце инкубации эмбрион недоразвит, перерожденная печень нарушение окраски, кровоизлияния чаще по краям,
- желток темно-зеленого цвета, сосуды желточного мешка инъецированы.


Ньюкаслская болезнь.

- Вирус может длительное время находиться в желтке до инкубации.
 На скорлупе яиц сохраняется в течение 7-15дней.
- Вызывает гибель эмбрионов через 3-4 дня после начала инкубации.
- Погибший эмбрион гиперемирован, отечен, на теле массовые точечные кровоизлияния.
- □ Кровоизлияния в железистом желудке.
- При правильной вакцинации родительских стад, признаки Ньюкаслской болезни эмбрионов практически не наблюдаются.
- Однако, гибель более 5% эмбрионов в стадии «задохлики» может свидетельствовать об атипичном течении НБ в хозяйстве.

- Вирусный энцефаломиелит.
- Типичная трансовариальная инфекция.
- Вирус находится в желтке. После начала инкубации гибнет до 69% эмбрионов. В яйце часто обнаруживают наличие крови.
- По мере увеличения возраста эмбрионов, смертность снижается.
- У погибших признаки геморрагической септицемии: кровоизлияния в аллантоис, тромбозы сосудов.
- Поскольку смертность особенно велика в начале инкубации, резко возрастает количество кровяных колец.
- Вирус вызывает токсикоз, поэтому у вылупившихся цыплят нервные явления запрокидывание головы или ее вращательные движения, судороги.

- Оспа птиц.
- Вирус оспы передается различными путями, в том числе и трансовариально. Задержки развития эмбриона напрямую зависят от вирулентности циркулирующего в хозяйстве штамма.
- Все штаммы вируса формируют на аллантоисе беловатые очаги некроза, расположенные по ходу кровеносных сосудов. По мере развития процесса узелки сливаются между собой, образуя сплошные зоны некроза.
- Инфекционный бронхит.
- Одно из наиболее опасных для куриных эмбрионов заболеваний.
- Это связано в первую очередь с поражениями яичников и яйцевода ухудшающих качество яйца.
- Эмбрионы наиболее чувствительны к этому вирусу на 10 сутки инкубации.
- У погибших эмбрионов характерны недоразвитие легких и сердца. увеличение селезенки, миоатрофия и кровоизлияния в аллантоис. Карликовость

Инфекционный ларинготрахеит.

- Возможности трансовариальной передачи инфекции не выяснены до конца.
- при заражении вирусом ИЛТ, у погибших эмбрионов обнаруживают отечность эмбриональных оболочек, очаги некроза (бляшки) на аллантоисе, кровоизлияния во внутренних органах

Аденовирусная инфекция.

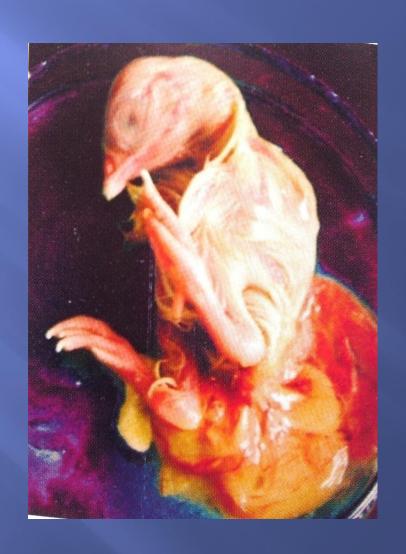
- Способы передачи недостаточно изучены. Зараженные эмбрионы отстают в росте. Смертность до 86%.
- У погибших эмбрионов индеек некробиоз печени.
- Для утиных эмбрионов типична задержка оперяемости, недоразвитие тела, желточный мешок теряет округлую форму, уплотняется.

Респираторно-кишечный синдром.

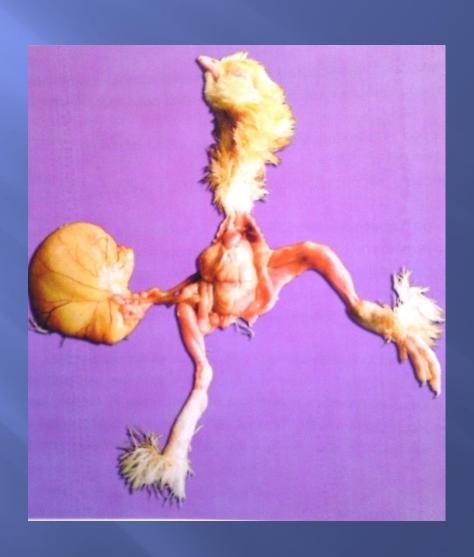
- Эмбрионы погибают как правило на выводе, с характерными признаками пневмонии и энтерита.
- Желчный пузырь увеличен, содержимое желудка и кишечника окрашено желчью. Резко увеличивается количество задохликов на выводе.
- В связи с разрушением белков сыворотки крови у выведенного молодняка в течение 10 − 15 дней наблюдается подагра почек.

Болезни бактериальной этиологии

Сальмонеллез (Пуллороз).


- Эта инфекция причиняла и причиняет значит экономический ущерб. Заражение Salm. Pull galinarum происходит в яичнике, яйцеводе и при выходе яйца из клоаки.
- Во время инкубации инфицирование может происходить через воздух. При выводе наиболее опасен воздушно-пылевой путь заражения.
- У эмбрионов, погибших от пуллороза, перед выводом желток приобретает зеленый цвет и инъецирован сетью кровеносных сосудов. Нередко плотной консистенции, неравномерно окрашен.
- Печень увеличена, с наличием мелких очагов некроза.
 Некротические очаги встреч также на сердце, селезенке, почках.
- Желчный пузырь всегда увеличен в несколько раз, желчью пропитывается печень с внутренней стороны. На желточном мешке, теле эмбриона и оболочках откладываются мочекислые соли.
- В прямой кишке, также происходит скопление мочекислых солей, отмечаются выделения из клоаки.

- Лабораторный диагноз посевы из желчного пузыря.
- В последнее время отмечают случаи атипично протекающего пуллороза, сопровождающегося конъюнктивитами, воспаленими суставов ног.
- При вскрытии у таких цыплят очаги некроза в сердце, паренхиматозных органах, дифтеритическое воспаление слепых отростков с наличием плотных фибринозных масс.


Колибактериоз.

- Заражение наступает, как правило, совместно с другими условно-патогенными микроорганизмами.
- Проникновение возбудителя через скорлупу происходит при снижении лизоцимной активности белка, возникающей вследствие нарушений обмена веществ у птицы родительского стада.
- У погибших эмбрионов обширные очаги некроза на различных участках тела, желток и белок разжижены.
- У эмбрионов, погибших в возрасте 15 дней обширная гиперемия кожных покровов, кровоизлияния в амниотическую жидкость, некробиоз печени.

п Псевдомоноз.

- Заражение происходит через скорлупу яйца. В заражении участвуют различные штаммы возбудителя, которые циркулируют в воздухе инкубаторов и контаминируют оборудование.
- Гибель эмбрионов достигает 15%, наблюдается с 1 по 8 день инкубации.
- У погибших эмбрионов патологоанатомические изменения, характерны для геморрагической септицемии: — печень, почки, легкие, селезенка темно-коричневого цвета, дряблой консистенции.
- Возбудители псевдомоноза весьма устойчивы ко многим антибиотикам, что существенно осложняет борьбу с ними (пенициллин, гентамицин, хлорамфеникол, стрептомицин, канамицин, спектам идр)..

■ Стафилококкоз.

- Эмбрионы птиц избирательно чувствительны к различным видам стафилококков и их токсинам.
- Гибель эмбрионов в отдельных случаях достигает 4-5%.
- Наблюдаются следующие патологоанатомические изменения: неиспользование желтка, дегенерация печени, кровоизлияния в паренхиматозные органы, омфалиты, перитониты
- У выведенных цыплят обнаруживают бурситы, артриты.

© Стрептококкоз.

- Стрептококки, проникшие в яйцо, вызывают гибель эмбрионов на ранних стадиях развития.
- Наибольшая чувств отмечена у эмбрионов 4-х дневного возраста они гибнут, практически в 100% случаях.
- При патолого- анатомическом вскрытии на более поздних стадиях развития (во второй половине инкубации), отмечаются поражения суставов, воспаления синовия, вплоть до остита.
- Брюшная стенка отечна, с геморрагиями. Содержимое желточного мешка водянистое, с гнилостным запахом.

■ Туберкулез.

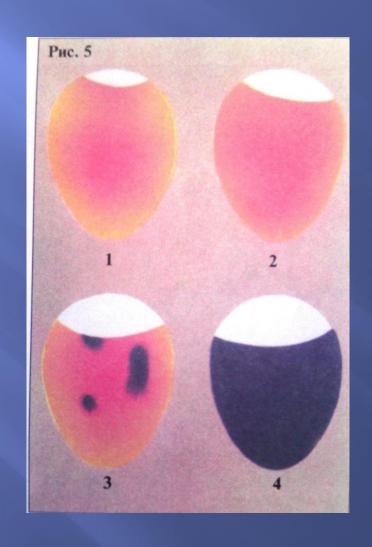
- при возникновении туберкулеза поражается значительное количество снесенных яиц.
- Палочки Коха препятствуют оплодотворению яиц, но механизм этого не изучен.
- п Патолого-анатомические изменения не характерны.
- Заражение происходит по видимому гематогенным путем. В яичнике возбудитель не выделялся. Необходимы лабораторные исследования.

Респираторный микоплазмоз.

- В распространении микоплазмоза вертикальный (трансовариальный) путь имеет ведущее значение.
- Из яиц полученных от родительских стад пораженных микоплазмозом погибает 10-30% эмбрионов, чаще в конце инкубации.

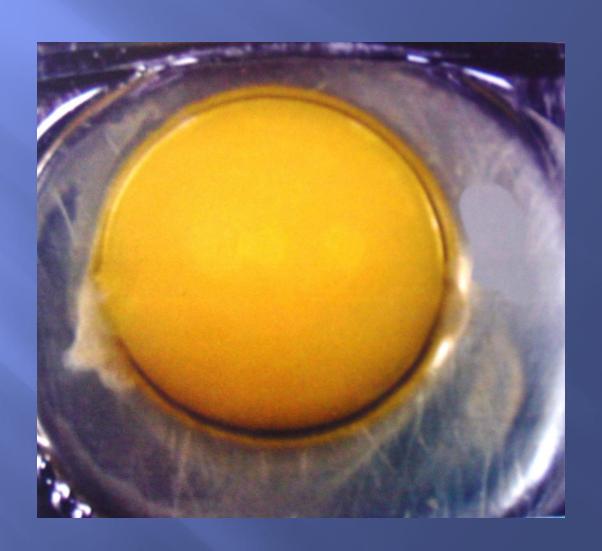
При вскрытии погибших эмбрионов обнаруживают задержку в росте, артриты коленного и плюсневого суставов, в полости суставов скопление жидкости.

- В конце инкубации характерным признаком микоплазмоза являеся аэросаккулит слипчивое воспаление в уже сформировавшихся воздухоносных мешках, скопление в них серозного и фибринозного экссудата.
- У суточных цыплят наблюдаются расстройства функций органов дыхания.


Болезни вызываемые условно патогенной микрофлорой

 Следует обратить внимание на эти патологии, участившиеся в последнее время из-за неграмотного применения химиотерапевтических средств.

■ МИКОЗЫ.


- Эти заболевания особенно опасны для птиц, которые содержатся на подстилке, из соломы злаковых.
- Проблема микозов обостряется в зимний период после нового года, т.к для изготовления комбикормов поступает прошлогоднее зерно.
- Особо актуальна проблема микозов для эмбрионов водоплавающих птиц (грязная скорлупа)

- Аспергиллез.
- Грибы этого вида обладают способностью расти на скорлупе, образуя гифы, отростки, которых способны проникать внутрь яйца.
- При вскрытии (овоскопии) пораженных яиц изменения очень характерны – в воздушной камере или ХАО колонии гриба, цвет от темно-зелен до черного,
- Эмбрионы погибают через 10-48 часов от начала инкубации.
- При вскрытии отечность эмбриональных оболочек, на внутренних органах – сероватые узелки, типична закупорка носовых отверстий, ушных каналов массой гриба.
- Большую опасность представляет аспергиллез для эмбрионов зараженных на выводе. У таких эмбрионов наблюдается размножение гриба на теле, конечностях, эмбрионадьных оболочках, с обширными очагами некроза.
- Вылупившийся молодняк служит источником распространения инфекции.

■ Микотоксикозы.

- Известно около 300 видов патогенных для птиц грибов, из них 60% относятся к роду аспергиллий, поражающих корма.
- Наиболее опасен афлатоксин
- Все токсины грибов вызывают необратимые серьезные патологические изменения у взрослых кур, передаются трансовариально, приводят к гибели эмбрионов. (эмбриотоксикозы). Белок у таких яиц разжижен с белесоватыми включениями
- Летальная доза афлатоксина 0,025 0,048 мг /яйцо.
- У цыплят полученных из яиц зараженных афлатоксином В1-уродства конечностей и крыльев, ороговение кожного покрова, мохнатое оперение, неправильное строение глаз, черепа, конечностей, отложение мочекислых солей на теле.

СПАСИБО ЗА ВНИМАНИЕ!

Биологический контроль инкубации яиц (БКИЯ)

- Биологический контроль инкубации яиц (БКИЯ) позволяет объективно оценивать воспроизводительные качества родительского стада, технологию инкубации, прогнозировать её результаты и своевременно устранять причины снижения.
- Основные традиционные приёмы БКИЯ овоскопирование по контрольным дням с выявлением погибших и оценкой развивающихся эмбрионов, наблюдение за временем и энергией вылупления и сортировка выведенного молодняка по качеству, вскрытие отходов инкубации, анализ результатов инкубации.

■ Биоконтроль в полном объёме достаточно трудоёмкий процесс, а без специальных знаний, навыков и оборудования, единообразия приёмов, регулярности, оперативной связи с цехами или предприятиями, которые производят инкубационные яйца и выращивают молодняк, не всегда достоверно отражает конечные результаты, поэтому проводится эпизодически, в сокращённом виде или вообще игнорируется

- Биологический контроль инкубации яиц должен проводить заведующий инкубаторием или старший оператор под контролем зооветспециалистов.
- Прижизненный биологический контроль проводится в помещениях для сортировки и инкубации яиц с возможным затемнением. Оценка выведенного молодняка по качеству — в выводном зале. Вскрытие отходов инкубации - в встеринарной лаборатории хозяйства на условно «грязной зоне» с соблюдением ветеринарно-санитарных правил (освещённость не менее 50 лк, наличие вытяжной вентиляции, холодного и горячего водоснабжения, канализации, бактерицидных ламп, дезинфицирующих средств).

- Размер средней пробы для овоскопирования и вскрытия не регламентируется и определяется в зависимости от объёмов и ретроспективных результатов инкубации, конкретной зооветеринарной ситуации, однородности партии по происхождению и качеству яиц.
- Естественно, достоверность результатов будет выше при использовании максимально большой выборки из каждого инкубационного шкафа с учётом зональности, партии, различного происхождения яиц, возраста родительского стада, сроков хранения и массы.

- При сортировке и укладке яиц рекомендуется выделить и пометить съёмными этикетками минимум 2-3 контрольных лотка, так как при их обезличивании велика ошибка.
- На этикетках должна быть максимальная информация о яйцах, в том числе их количестве и массе.
- На прижизненный БКИЯ в таком объёме затрачивается от 30 до 45 минут.
- По завершении оценки выведенного молодняка из контрольных лотков можно вскрыть все отходы инкубации, но не менее 90-120 штук.

Приспособления и оборудование для проведения контроля:

стол-овоскоп СМУ-А, ручной молоточковый овоскоп с сильным источником света; подставка под инкубационный лоток с углом наклона 10-15 по большой стороне; ячеистые одноразовые бугорчатые гофрированные картонные или многоразовые пластиковые прокладки; весы для взвешивания лотков с яйцами; стол для вскрытия отходов инкубации; тара или посуда для отходов; ножницы (большие и остроконечные глазные хирургические или маникюрные); пинцет хирургический; чашки Петри для выливания яиц; тонкие резиновые одноразовые перчатки; журнал или протокол учёта результатов биологического контроля и сортировки молодняка.

Основные нормальные признаки по суткам		ные патолого-анатомические ения по периодам инкубации	Контрольная проба отходов шт. %		Всего отходов	
no cy rkuw			ШТ.	%0	ШТ.	%
		До 4 суток				
2— кровеносные со на желтке 3— пигментация г	-	Неоплодотворенные*				
		Погибшие в первые 48 ч*				
		Кровяные кольца				
		Разрыв желточной оболочки				
5-11-е сутки (замершие I)						
		Эмбриональная дистрофия				
5 — челюсти, веки7 — рот, пальцы9 — пер. сосочки		Гематоамнион				
		Уродства				
11 - замыкание аллантог	иса	Усушка				
		Мацерация				

*— Основная категория отходов инкубации

Эмбриональная дистрофия

Гиперемия

12 — пух на спине

Отёк тела (микседема)

16-17 — белок использован

Курчавое, редкое оперение

18 — начало втягивания желточного мешка

Неиспользованный белок

Уродства

Тумаки

Замершие, всего

18,5-21-е сутки (задохлики*)

Неправильное положение и наклёв

Невтянутый желточный мешок

Остаточный желток зелёный, коричневый

Отёк, кровоизлияния шеи,

головы

жёлтым остаточным желтком яркожёлтая Кишечник

Липкость

розовый, без газов Почки не

Курчавое, редкое оперение

Мочеточники без м/к солей

Желточный мешок втянут с

Печень вишнёвая или

увеличены

Уродства

^{*—} Основная категория отходов ункубации

- Для определения субъективных и объективных показателей яиц без вскрытия (чистота, состояние и целостность скорлупы, в том числе «мраморность», размер и расположение воздушной камеры, состояние желтка, масса, форма, плотность) отбирают из партии среднюю пробу с учётом породы (линии), возраста птицы: не менее 50 яиц, с нарушением целостности скорлупы (индекса желтка, толщины скорлупы); не менее 20- для определения содержания витаминов, кислотного числа не менее 10 яиц.
- При этом «мраморность» скорлупы (условный брак) является хорошим индикатором возраста и состояния здоровья птицы родительского стада, оптимальности микроклимата (гипертермии, повышенной влажности и загазованности), обеспеченности витаминами D₃, B₂ и присутствия микотоксинов в корме.

- Во время инкубации яиц о нормальном развитии эмбрионов можно судить по их росту, по морфологическим и физиологическим изменениям. Для этого контрольные лотки следует установить на специальную подставку под углом и просвечивать яйца индивидуально, начиная с верхнего ряда.
- Снижает достоверность БКИЯ игнорирование калибровки яиц по массе и поэтапная закладка яиц.
- Масса яиц в лучших стадах колеблется относительно среднего значения в пределах $\pm 15\%$.
- Максимальная разница по массе самых мелких и самых крупных инкубационных яиц у кур достигает 27г, или 64%, у индеек 80 г (68%), у уток 40 г (64%), у гусей 100 г (58%).

- При каждом из трёх общепринятых овоскопированиях неоплодотворённые яйца, в том числе «свежаки», а также с замершими эмбрионами (кровяные кольца, замершие), с повреждённой скорлупой (усушка) удобно для учёта накапливать в расположенные на столе рядом с лотком гофрированные прокладки, а затем уложить их в верхние ряды лотка.
- На них нужно сделать метку простым карандашом. Это позволяет при последующих просмотрах не касаться этих яиц и тем самым экономить время.

- В процессе перекладывания яиц из инкубационных в выводные лотки маркировку контрольных лотков следует сохранять. В результате на выводе именно в них будет производиться контрольная выборка, сортировка молодняка и вскрытие отходов инкубации.
- Это важно, так как только овоскопирование не обеспечивает идентификацию эмбрионов, погибших в первые 48 часов инкубации (свежаки), а также замерших на 17-18 сутки.
- Распределение живых эмбрионов по степени роста и развития на три категории рекомендую проводить на 30 яйцах с контрольного лотка.
- При нормальном развитии количество яиц с эмбрионами I −й
 категории должно составлять не менее 70-80% от общего количества

- Операцию комиссионного патологоанатомического анализа отходов инкубации осуществляют в следующем порядке:
- сначала вскрывают все яйца с тупого конца ножницами с большими концами.
- При необходимости можно содержимое яиц вылить в чашку Петри, использовать лупу для рассмотрения.
- Распределить отходы по основным категориям, их количество зафиксировать в протоколе (таблице) или журнале, а затем более тщательно сделать анализ погибших эмбрионов с помощью маленьких ножниц с острыми концами.

- В неоплодотворённых яйцах на желтке видна белая точка диаметром
 1-2 мм.
- Если яйцо оплодотворённое, но эмбрион погиб до инкубации, то диаметр бластодиска равен 3-4 мм и вокруг его центра чередуются светлые и тёмные кольца на желтке.
- В случае, когда эмбрион погиб в первые два дня инкубации, вокруг бластодермы со светлым полем в центре будет видна «новая плазма» (овал разжиженного желтка диаметром до 1 0-15 мм с белыми тяжами).
- Отличительными при на марка и в остром конце яйца и втягивание желтка в брюшную полость.
- Относительное количество категорий отходов инкубации в процентах от вскрытых яиц затем является основой для перерасчёта общего количества от всей партии.

- Следует учитывать, что диагностика причин эмбриональной смертности во многих случаях затруднена из-за сходного действия факторов, приводящих к гибели эмбрионов в процессе инкубации.
 Часто патолого-анатомические изменения у эмбрионов неспецифичны.
- Кроме этого у эмбрионов, погибших за несколько дней до вскрытия, могут произойти посмертные изменения в виде мацерации, когда происходит окрашивание тканей в грязно-розовый цвет из-за гемолиза.
- □ Не рекомендуется устанавливать диагноз на основании единичных случаев тех или иных патологоанатомических изменений. Внимание надо обращать на те, которые занимают не менее 25-30% от общего количества.

- Если есть подозрение на заболевание эмбрионов в связи с алиментарной недостаточностью, то необходимо проверить рационы кормления родительского стада и по возможности сделать анализ кормов.
- Подозревая «старение» яиц», следует установить их фактический возраст и проверить условия хранения.
- Нарушения режима инкубации целесообразно подтвердить показаниями контрольно-измерительных приборов.
- В любом случае следует идти путём исключения возможных причин, понизивших результаты инкубации т.е. проводить АНАЛИЗ и делать ВЫВОДЫ.

СПАСИБО ЗА ВНИМАНИЕ