Внутренняя

энергия идеального одноатомного газа

Внутренняя энергия

макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул тела и потенциальных энергий взаимодействия всех молекул друг с другом

Внутренняя энергия

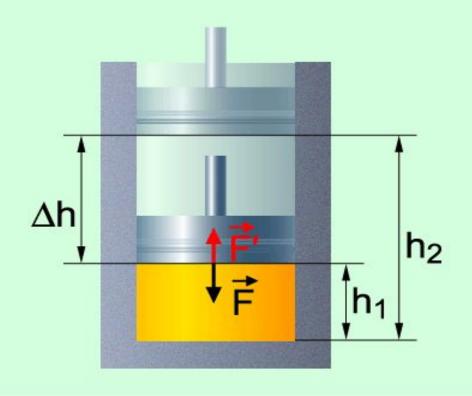
идеального газа

- □ Потенциальная энергия молекул идеального газа равна нулю.
- Вся внутренняя энергия идеального газа представляет собой кинетическую энергию беспорядочного движения молекул
- □ U внутренняя энергия идеального газа

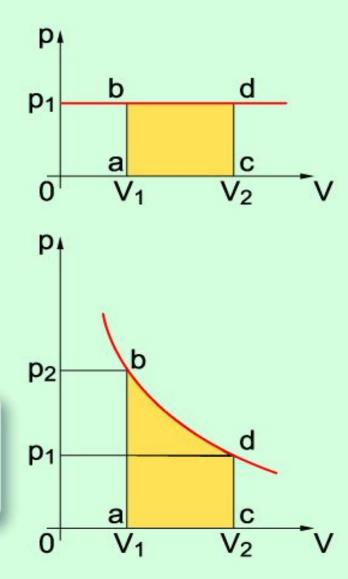
$\frac{3m}{U=2M}RT$

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре

Изменение внутренней энергии:


$$\Delta \mathbf{U} = \frac{3m}{2M} \mathbf{R} \Delta \mathbf{T}$$

Изменить температуру тела можно двумя способами:


Нагреть или охладить – то есть сообщить ему количество теплоты Нагреть или охладить – то есть сообщить ему количество теплоты ОНагреть или охладить – то есть сообщить ему количество

Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.

Работа в термодинамике

A' = F'
$$\Delta$$
h = pS(h₂-h₁) = p(Sh₂-Sh₁)
A' = p(V₂-V₁) = p Δ V

$A^{I} = p\Delta V$

- □ р давление идеального газа
- □ ΔV изменение объема
- □ A работа внешних сил
- \square A^{I} работа газа

- □ Если газ расширяется, т.е. $V_1 < V_2$, то $\Delta V > 0$ и работа газа положительна;
- □ При сжатии газа V₁>V₂ и ΔV < 0, то работа газа отрицательна, в этом случае работа внешних сил оказывается положительной.

Геометрическоеистолкование работы газа

Работа газа в термодинамике численно равна площади фигуры, ограниченной графиком изопроцесса в осях р(V).

Количество

теплоты

Количество теплоты

Процесс	Формула	Удельная величина
Нагревание и охлаждение		
Плавление и кристаллизация		

Парообразование и конденсация Сгорание топлива

- □ Количество теплоты энергия,
 - которую тело теряет или приобретает в процессе теплопередачи.
- □ Q>0, если тело приобретает энергию;
- □ Q<0, если тело теряет энергию.</p>

1. Нагревание (охлаждение)

- □ с удельная теплоемкость тела количество теплоты необходимое для изменения температуры тела массой 1 кг на 1 К.
- \Box [c]= 1 Дж/кг*К

2. Плавление

(кристаллизация)

- \square $\mathbf{Q} = \lambda \mathbf{m}, \mathbf{Q} = -\lambda \mathbf{m}$
- □ λ удельная теплота плавления

 количество теплоты,
 необходимое для плавления тела
 массой 1 кг при температуре
 плавления
- \square [λ] 1 Дж/кг

3. Парообразование (конденсация)

- \square Q = rm, Q = -rm
- □ r удельная теплота парообразования – количество теплоты, необходимое для парообразования 1 кг жидкости при неизменной температуре
- \square [r] = 1 Дж/кг

4. Сгорание топлива

- \square $\mathbf{Q} = \mathbf{qm}$
- □ q удельная теплота сгорания топлива количество теплоты, выделяющееся при полном сгорании 1 кг топлива
- \square [q] = 1 Дж/кг

Домашнее задание:

- □ § 79
- □ Упр. 15 (1,2,4)

	1 вариант		2 вариант
1.	Количество теплоты	1.	Внутренняя энергия
2.	Удельная теплоемкость	2.	Удельная теплота плавления
3.	Формулы: количества теплоты, необходимое для нагревания тела; количество теплоты, необходимое для плавления тела.	3.	Формулы: количества теплоты, необходимое для парообразования; изменение внутренней энергии.