Курсовой проект по дисциплине «Технология автоматизированного производства»

Тема проекта: «Спроектировать технологический процесс и технологическую оснастку обработки детали «...» в условиях автоматизированного производства»

Содержание пояснительной записки

ТИТУЛЬНЫЙ ЛИСТ

БЛАНК ЗАДАНИЯ

Ведомость объема проекта

Реферат

Введение

- 1 ОБЩАЯ ЧАСТЬ
- 1.1 Анализ технологичности конструкции детали
- 1.2 Определение типа или назначение типа производства

Содержание пояснительной записки

- 2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
- 2.1 Выбор метода получения заготовки
- 2.1 Разработка маршрутного технологического процесса
- 2.3 Определение припусков на механическую обработку
- 2.4 Определение размеров заготовки
- 2.5 Анализ и выбор схем базирования заготовки
- 2.6 Обоснование и выбор технологического
- оборудования
- 2.7 Обоснование и выбор технологической оснастки
- 2.8 Размерный анализ технологического процесса
- 2.9 Расчет режимов резания
- 2.10 Нормирование технологического процесса

Содержание пояснительной записки

3 КОНСТРУКТОРСКАЯ ЧАСТЬ

- 3.1 Проектирование специального приспособления
- 3.1.1 Расчет усилия закрепления
- 3.1.2 Расчет параметров привода
- 3.1.3 Прочностной расчет элементов приспособления
- 3.1.4 Описание конструкции и принципа действия приспособления
- 3.1.5 Расчет приспособления на точность
- 3.2 Проектирование контрольного приспособления
- 3.2.1 Выбор схемы контроля
- 3.2.2 Описание работы приспособления
- 3.2.3 Расчет погрешности измерения

Выводы

Перечень ссылок

Приложения к пояснительной записке:

- маршрутные карты;
- операционные карты и карты эскизов;
 - спецификации на приспособления.

Пояснительная записка выполняется согласно действующего стандарта и должна содержать не более 30 страниц.

Графическая часть проекта включает:

- чертеж детали (формат А2 или А3);
- чертеж заготовки (формат А2 или А3);
- карты наладки на 3-4 технологические операции (общий объем 1 лист формата A1)
- чертеж специального станочного приспособления (1 листа формата A1);
- чертеж специального контрольного приспособления (1 листа формата А1).

Анализ технологичности конструкции детали

Совокупность свойств изделия, определяющих приспособленность его конструкции к достижению оптимальных затрат ресурсов при производстве и эксплуатации для заданных показателей качества, объема выпуска и условий выполнения работ, представляет собой технологичность конструкции изделия (ТКИ).

Определение типа производства

Тип производства определяется, исходя из годового выпуска деталей (исходные данные проекта) и массы детали. Если масса детали не указана на чертеже, ее необходимо определить, исходя из объема изделия и удельного веса материала.

Величина партии запуска n_{зап} определяется по формуле

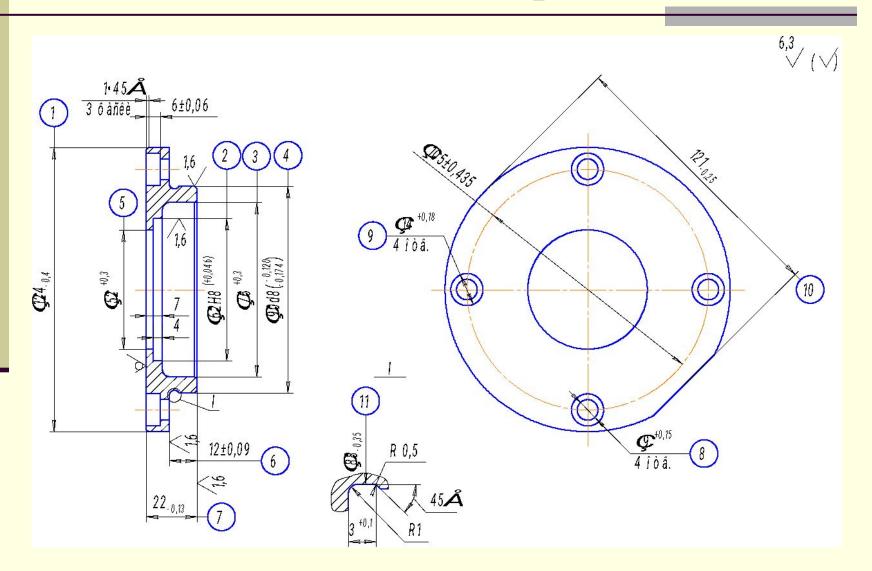
$$n_{3an} = \frac{a \cdot N_{z}}{D}$$

где а - число дней работы на заделе; D - число рабочих дней в году.

Выбор метода получения заготовки

Исходя из служебного назначения детали, материала заготовки и типа производства, студент принимает решение о том, какой метод использовать при получении заготовки.

Если в качестве заготовки предусматривается использовать прокат, рассчитывается коэффициент использования материала $k_{_{\mathrm{UM}}}$


$$k_{_{\rm MM}} = M_{_{\scriptstyle \partial}}/M_{_{\scriptstyle 3}} ,$$

где $M_{\rm a}$ - масса детали; $M_{\rm g}$ - масса заготовки.

Если в качестве заготовки будет использоваться отливка для нее назначают класс точности и ряд припусков.

Если в качестве заготовки будет использоваться штамповка для нее определяют расчетную массу M_p , группу стали M, степени сложности C, класс точности T и исходный индекс.

Разработка технологического процесса механической обработки

Разработка технологического процесса механической обработки

№ пов	Точность поверхности (размер, допускаемые отклонения, точность формы, точность относительног о положения)	Квалитет, по чертежу	Шероховатость поверхности Ra, мкм.	Технологические переходы	Точность выполнения перехода	Шероховатость обработанной поверхности, Ка, мюм.
1	Ø62H8	Н8	1,6	Точение черновое Точение чистовое Шлифование	H12 H10 H8	6,3 3,2 1,6
2	Ø44H12	H12	12,5	Точение однократное	H12	6,3
4	Ø76k6	k6	1,6	Точение черновое Точение чистовое Шлифование черновое Шлифование чистовое	h12 h10 h8 k6	6,3 3,2 1,6 0,8
5	60h12	h12	12,5	Фрезерование однократ ное	H12	0,8 6,3
6	Ø13H12	H12	12,5	Сверлить	H12	6,3
7	M10-7H	7H	12,5	Сверление зенкование нарезание резьбы	H12 H12 7H	6,3 6,3 6,3

Разработка технологического процесса

механической обработки
На основании маршрутов обработки элементарных

На основании маршрутов обработки элементарных поверхностей разработаем маршрут обработки детали в целом. Маршрутный технологический процесс включает в себя следующие операции:

05 Фрезерно-центровальная (фрезерование торцев 11 и 12, сверление центровых отверстий 10)

10 Токарная с ЧПУ (обработка наружных цилиндрических поверхностей 1 и 2, торцев, фаски).

15 Токарная с ЧПУ (обработка внутренних поверхностей 3,4, канавки 9, фасок, торцев).

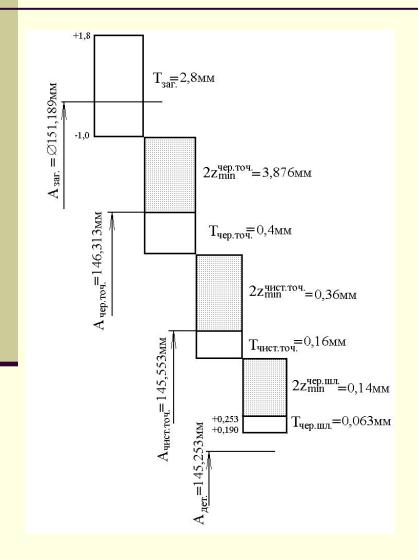
20 Круглошлифовальная (шлифование пов. 1, 3, 4).

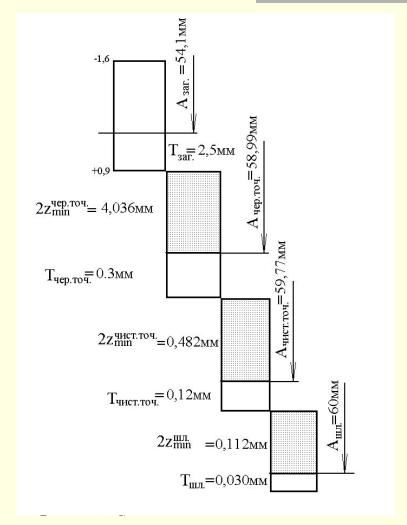
25 Вертикально-фрезерная с ЧПУ (фрезерование пазов 7 и 8).

- 30 Радиально-сверлильная (обработка отверстий 5)
- 35 Радиально-сверлильная (обработка отверстий 6)
- 40 Термообработка (Улудшить НВ 229...269)
- 45 Круглошлифовальная (шлифование пов. 1. 3. 4).

Определение припусков на механическую обработку

При выполнении этого этапа курсового проекта для двух поверхностей припуски и операционные размеры рассчитываются аналитическим методом. Например, при обработке поверхностей вращения минимальные припуски на механическую $2z_{mini-1}$ обработку рассчитываются по формуле

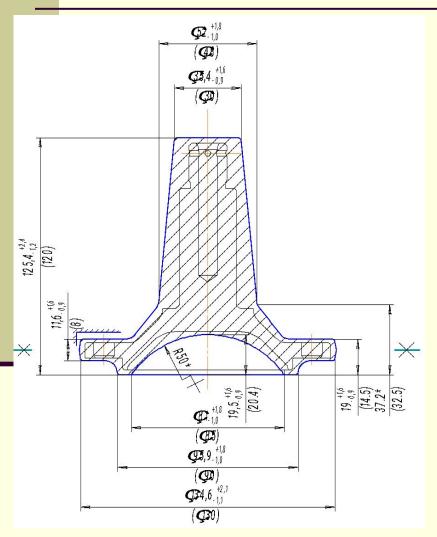

$$2z_{\min_{i-1}} = 2\left(Rz_{i-1} + h_{i-1} + \sqrt{\Delta_{\Sigma_{i-1}}^2 + \varepsilon_{-i}^2}\right)$$


где Rz_{i-1} - высота микронеровностей поверхности на предыдущем переходе, мкм; h_{i-1} - глубина дефектного слоя на предыдущем переходе, мкм; $\Delta_{\Sigma_{i-1}}$ - суммарная погрешность взаимного расположения поверхностей на предыдущем переходе, мкм; ϵ_y - погрешность установки на выполняемом переходе, мкм.

Определение припусков на механическую обработку

Таблица 2 - Расчет припус	В											
Технологический переход,	l ⊩ l	Элементы припуска, мкм			Zzmin, MKM	Допуск, мкм	_ ₹	Расчетный операционный		Расчетный размер припуска,		
операция						nin	Ç	8 a	размер, мм		ММ	
	KBa	Rz	h	Δ_{Σ}	ϵ_{y}	2z	Допу	О перац. размер,	max	min	max	min
Пов. 145ц8												
Заготовка		200	250	1486			2800	151,189	153,0	150,2		
Черновое точение	h12	50	50	74	80	3876	400	146,313	146,31	145,91	7,09	3,89
Чистовое точение	h10	25	25	3	30	360	160	145,553	145,55	145,39	0,92	0,36
Черновое шлифование	u8	10	20	0,09	20	140	63	145,253	145,253	145,190	0,360	0,137
Пов. 60Н7												
Заготовка		200	250	1486			2500	54,050	55,0	52,5		
Черновое точение	H12	50	50	74	500	4036	300	58, 986	59,29	58,99	6,79	3,99
Чистовое точение	H10	25	25	3	120	482	120	59, 768	59,89	59,77	0,90	0,48
Черновое шлифование	H7	10	20	0,09	5	112	30	60	60,030	60,000	0,26	0,11

Определение припусков на механическую обработку



Определение размеров заготовки

№ пп	Размер детали, мм ⊘160h8	Допуск, мм 1.6	Припуск, мм 2x3,2	Размер заготовки, мм ∅166,4
	Ø50H7	1,2	2x3	Ø44
	Ø90h12	1,4	2x2,4	Ø94,8
	180 _{-0,25} (h11)	1,8	2,8+2,8	185,6
	90 _{-0,39} (h13)	1,4	-2,4+2,8	90,4

Определение размеров заготовки

В технических требованиях на штамповку обязательно указывается:

- 1. Вид термообработки заготовки и получаемая твердость материала.
- 2. Группа стали, степень сложности, класс точности, исходный индекс.
- 3. Неуказанные на чертеже штамповочные радиусы и уклоны.
- 4. Допускаемая величина смещения частей штампов и остаточного облоя.
- 5. Способ очистки заготовки. В пояснительной записке приводится эскиз заготовки

Выбор схем базирования заготовки

№ опер., наименование 1	Схема базирования	Схема установки.
10 Токарная с ЧПУ		
40 Горизонтально- фрезерная		

Обоснование и выбор технологического оборудования

Исходя из сказанного, для обработки наружных поверхностей используем станок токарный с ЧПУ 16К20Т1 с числовым программным управлением. Предназначен он для токарной обработки за один или несколько проходов в замкнутом полуавтоматическом цикле наружных и внутренних поверхностей деталей типа тел вращения со ступенчатым и криволинейным профилем различной сложности, включая нарезание крепежных резьб. Его основные параметры [5]:

- 1. Наибольший диаметр обрабатываемой заготовки над суппортом -220мм.
 - 2. Наибольшая длинна обрабатываемой заготовки 1000мм.
 - 3. Частота вращения шпинделя 22,4...2240об/мин.
 - 4. Подача 0,01...20 мм/мин.
 - 5. Мощность двигателя 11 кВт.
 - 6. Количество позиций инструмента в револьверной головке –

Обоснование и выбор технологической оснастки

Nenn Операция 1 2		Приспособления для крепления заготовки и инструмента	Режущий инструмент	Средства измерения	
		3	4	5	
10	Фрезерно- центровальная	Приспособление при станке	Фреза 2214-0005 Т5К10 ГОСТ 24359-80 Фреза 2214-0006 Т5К10 ГОСТ 24359-80 Сверло 2317-0112 ГОСТ 14952-75	Штангенциркул ь ШЦЦ-II-500- 0,01 ГОСТ 166- 89	
20, 30	Токарная с ЧПУ	Центр А-1-4-Н ГОСТ 8742-75 Патрон 7108-0026 ГОСТ 2571-71 Хомутик 7107-0048 ГОСТ 2578-70 Центр специальный плавающий	Резец 2101-0601 Т5К10 ГОСТ 20872-80 Резец 2120-0541 N Т5К10 ГОСТ 28978-91 Резец 2101-0601 Т15К6 ГОСТ 20872-80	Штангенциркул ь ШЦ-I-300-0,05 ГОСТ 166-89	
60	Радиально- сверпильная	Приспособление специальное Втулка 6100-0231 ГОСТ 13599-78 Втулка 6100-0144 ГОСТ 13598-85	Сверлю 2301-1426 ГОСТ 22736-77 Сверлю 2301-4346 ГОСТ 22736-77 Зенкер 2320-0528 ГОСТ 21583-76 Зенковка 2353-0124 ГОСТ 14953-80	Калибр-пробка 8133-0267 ГОСТ 16780-71	

Расчет режимов резания

В пояснительной записке приводится расчет режимов резания на 2-3 операции.

При назначении режимов резания учитывают характер обработки, тип и размеры инструмента, материал его режущей части, материал и состояние заготовки, тип и состояние оборудования. Режимы резания обычно устанавливают в следующем порядке: глубина резания t, подача S, скорость резания V, частота вращения шпинделя n.

Если в операции несколько переходов, в пояснительной записке приводят расчет режимов резания на лимитирующем переходе (том на котором формируются наибольшие силы резания). Режимы резания на остальные переходы приводятся в виде таблицы.

Нормирование технологического процесса

Для нормирования операции выполняемой на станке с ЧПУ используем методику приведенной в [13]. Особенностью этой методики является то, что основное время (машинное) и время, связанное с переходом, рассматривается как единая величина T_a - время автоматической работы станка по программе, которое складывается из основного времени автоматической работы станка $T_{o.a}$ и вспомогательного времени работы станка по программе $T_{a.a}$ т. е,

$$T_{a} = T_{o.a} + T_{e.a};$$

$$T_{o.a} = \sum_{i=1}^{n} \frac{L_{i}}{S_{Mi}}$$

$$T_{e.a} = T_{e.x.a} + T_{ocm}$$

где $L_{\rm i}$ — длина пути, проходимого инструментом в направлении подачи при выполнении i-го технологического перехода (с учетом врезания и перебега); smi - минутная подача на данном переходе, i=1, 2, ...; n - число технологических переходов; Te.x.a - время на выполнение автоматических вспомогательных ходов (подвод детали или инструментов от исходных точек в зоны обработки и отвод, установка инструмента на размер, изменение численного значения и направления подачи); Тост - время технологических пауз - остановок подачи и вращения шпинделя для проверки размеров, осмотра или смены инструмента.

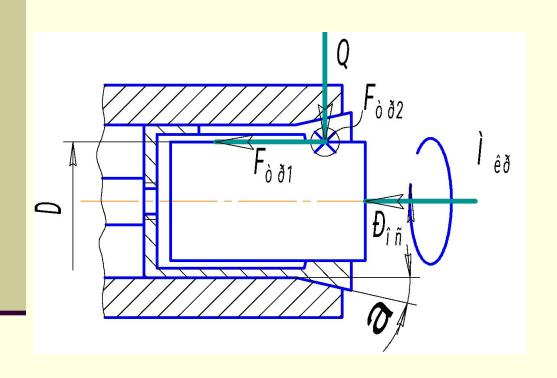
Нормирование технологического процесса

$$T_{6a} = a_2 \frac{\left(\sqrt{X_o^2 + Y_o^2 + Z_o^2}\right)}{1000 \cdot v_{vc}} n_u$$

Время вспомогательной ручной работы T_{g} не перекрываемое временем автоматической работы станка,

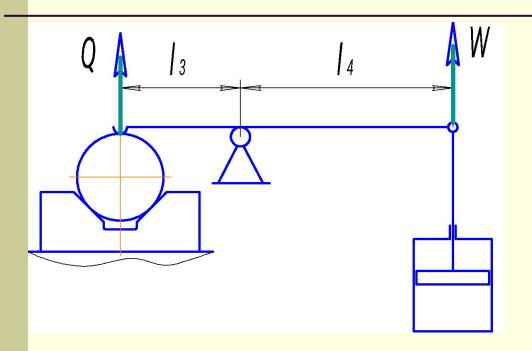
$$T_{e} = t_{ycm} + t_{e.on} + t_{контр},$$

$$t_{ycm} = aQ^{x},$$

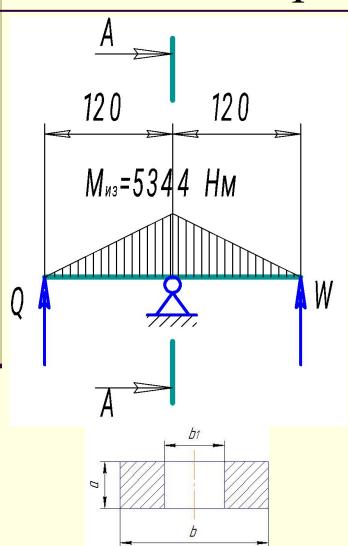

$$t_{e.on} = a_{3} + e(X_{o} + Y_{o} + Z_{o}) + cK + \alpha T_{a},$$

$$T_{n-3} = a_{4} + e_{2}n_{u} + eP_{p},$$

$$k_{cep} = 4,17 \left[(T_{a} + T_{e})n_{n} + T_{n-3} \right]^{-0,216},$$

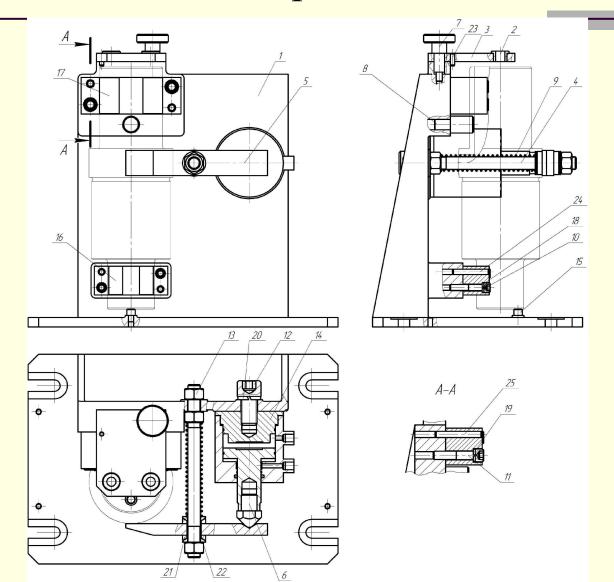

$$T_{um} = (T_{a} + k_{cep} T_{e}) \left(1 + (a_{o6c} + a_{om.n})/100 \right)$$

Расчет усилия закрепления


$$K M_{\kappa\rho} = F_{mp2} D/2$$
;
 $K P_o = F_{mp2}$.
 $F_{mp2} = f Q_{M\kappa\rho}$;
 $F_{mp2} = f Q_{Po}$,
 $K M_{\kappa\rho} = f Q_{M\kappa\rho}$,
 $D/2$;
 $K P_o = f Q_{Po}$.
 $Q_{M\kappa\rho} = 2 K M_{\kappa\rho} / (f D)$;
 $Q_{Po} = K P_o / f$.

Расчет параметров привода

$$W I_3 = Q I_4$$
,
 $W = Q I_4/I_3$.


Прочностной расчет элементов приспособления

$$\sigma_{u3} = \frac{M_{u32}}{W_{oc}}$$

$$W_{oc} = \frac{a^2(b - b_1)}{6}$$

Описание конструкции и принципа действия приспособления

Расчет приспособления на точность

$$\varepsilon_{y} = \sqrt{\varepsilon_{6}^{2} + \varepsilon_{3}^{2} + \varepsilon_{np}^{2}}$$

где ε_б - погрешность базирования; ε_з - погрешность закрепления; ε_{пр} -погрешность приспособления.