Азотсодержащие соединения

Амины – органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеводородным радикалом.

СН₃—NН₂ первичный амин метиламин

СН₃СН₂—NН—СН₂СН₃ вторичный амин диэтиламин

Азотсодержащие соединения

Амины – органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеводородным радикалом.

третичный амин триэтиламин

Изомерия и номенклатура

• изомерия углеродного скелета $CH_3-CH_2-CH_2$ — $CH_3-NH_{0 y T u J n a m u H^2}$

СН₃—СН— СН₂—NН₂ Н изобутилам зин

Изомерия и номенклатура

• изомерия положения функциональной группы

Изомерия и номенклатура

• межклассовая изомерия СН₃—СН₂— СН — NН первичный амин пропиламин

третичный амин триметиламин СН₃— СН<mark>ВТОРИЧНЫЙ</mark>СН₃ метилэтилами

Н

Monyyehue

Получение аминов из галогенопроизводных: CH₃CH₂NH₃ - CH₃CH₂NH₃ - Вг бромэта

CH₃CH₂NH₃-Br + ___NaOH

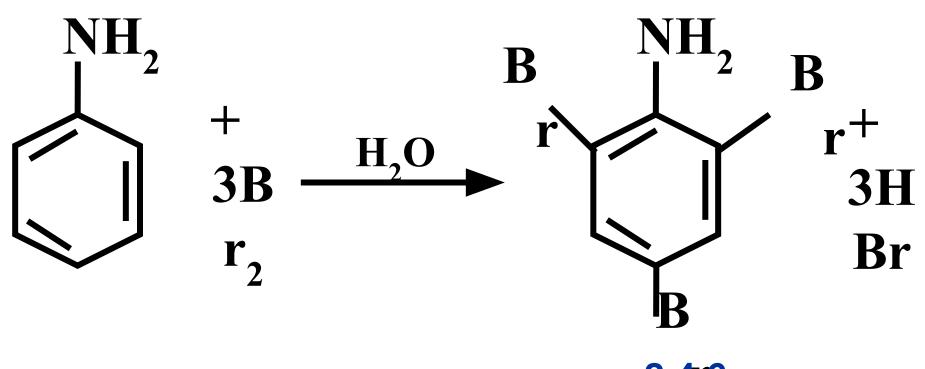
NaBr + CH₃CH₂NH₂ + Ну Qaми

Н

Monyyehue

2. Получение первичных аминов восстановлением нитросоединений:

MUMUIGCKUP CBOUCMBA


1. Амины – как основания

2. Амины горят:

3. Реакция замещения (бромирование, нитрование) ароматических аминов:

анилин

2,**4**,6триброманилин

