Качественные и количественные методы психолого-педагогических исследований

ИЗМЕРЕНИЕ В ПСИХОЛОГИИ

•**Измерение** - это приписывание числовых форм объектам или событиям в соответствии с определенными правилами.

Это процедура сравнения измеряемого объекта с некоторым эталоном, и получение численного выражения в определенном масштабе или шкале.

Процесс присвоения количественных (числовых) значений – **кодирование**.

Кодирование психологической информации в числовую форму позволяет применять методы математического анализа.

- Признаки и переменные это измеряемые психологические явления.
- Понятия признака и переменной могут использоваться как взаимозаменяемые.
- Понятия показателя и уровня указывают на то, что признак может быть измерен количественно.
- Значения признака определяются при помощи специальных шкал, так как психологические переменные не имеют собственных единиц измерения.

- С. Стивенсом предложена классификация из 4 типов шкал измерения:
- 1) номинативная, или номинальная, или шкала наименований;
- 2) порядковая, или ординальная, шкала;
- 3) интервальная, или шкала равных интервалов;
- 4) шкала равных отношений.
- *Шкалы 1 и 2 типа позволяют выполнить качественные измерения, 3 и 4 типа количественные.

- •Номинативная шкала это шкала, классифицирующая по названию: *потеп* (лат.) имя, название.
- •Номинативная шкала это способ классификации объектов или субъектов, распределения их на непересекающиеся группы.
- •Номинативная шкала позволяет нам подсчитывать частоты встречаемости разных "наименований", или значений признака.

Например: сангвиник, холерик, флегматик, меланхлик.

- •Номинальная шкала определяет, что разные свойства или признаки качественно отличаются друг от друга, но не подразумевает количественных операций с ними.
- •Единица измерения количество наблюдений (испытуемых, свойств, реакций).
- •Например, дихотомическая шкала экстраверт, интраверт.

•Порядковая (ранговая, ординарная) шкала - это шкала, классифицирующая по принципу «больше – меньше», «вышениже» и.т.д.

В порядковой шкале показатели образуют последовательность от ранга "самое малое значение" к рангу "самое большое значение" (или наоборот). Предполагает, не менее трех классов (высокий, средний, низкий).

Например: школьные оценки от 5 до 1 балла.

- •Интервальная шкала это шкала, классифицирующая по принципу «больше на определенное количество единиц меньше на определенное количество единиц».
- •Каждое из возможных значений признака отстоит от другого на равном расстоянии.
- •Размер интервала величина фиксированная и постоянная на всех участках шкалы.
- •Единица измерения стены.

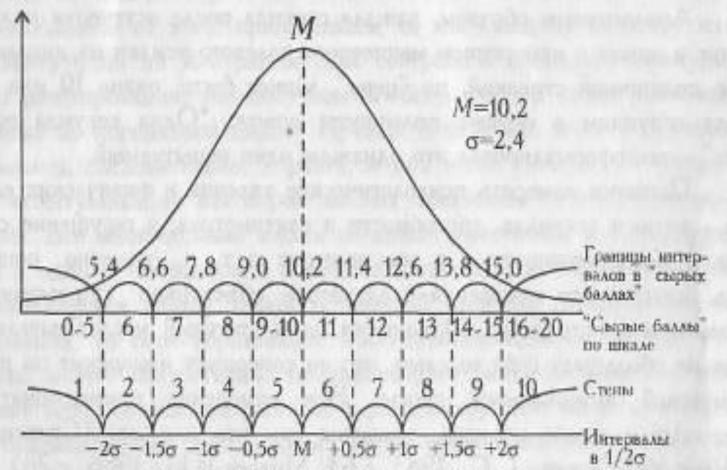
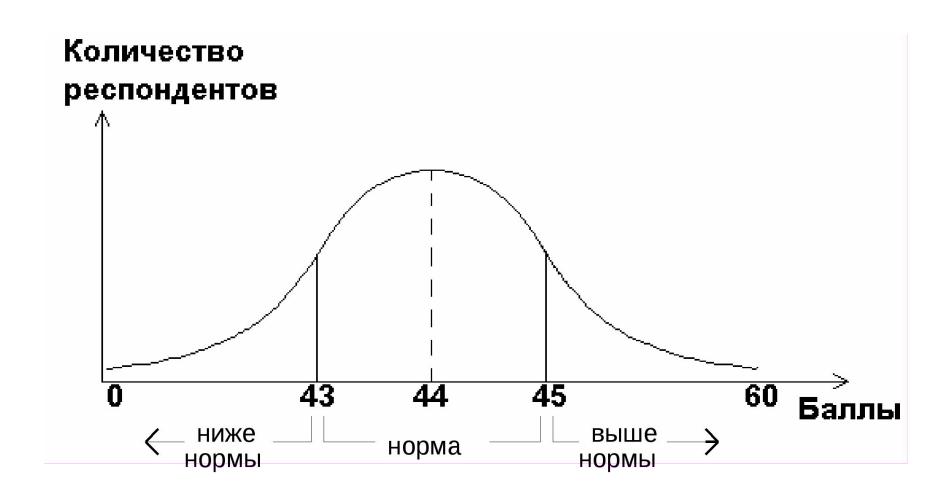


Рис. 1.1. Схема вычисления стандартных оценок (стенов) по фактору N 16-факторного личностного опросника Р. Б. Кеттелля; сиизу указаны интервалы в единицах 1/2 стандартного отклонеция

Шкала равных отношений - это шкала, классифицирующая объекты или субъектов пропорционально степени выраженности измеряемого свойства.


В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8.

Это предполагает наличие абсолютной нулевой точки отсчета.

В психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности.

- <u>Распределением признака</u> называется закономерность встречаемости разных его значений.
- Нормальное распределение характеризуется тем, что крайние значения признака в нем встречаются достаточно редко, а значения, близкие к средней величине достаточно часто.

Распределение признака

Распределение признака

Статистические гипотезы

Гипотеза – предположение, проверяемое в исследовании.

- •<u>Нулевая</u>
 <u>гипотеза (Н₀)</u>
 это гипотеза об
 отсутствии различий.
- Альтернативная гипотеза (H₁) это гипотеза о значимости различий.

Проверка гипотез осуществляется с помощью критериев статистической оценки различий.

Статистические критерии

• Статистический критерий - это решающее правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью.

Статистические критерии

- Статистические критерии обозначают также метод расчета определенного числа и само это число.
- По соотношению эмпирического и критического значений критерия мы можем судить о том, подтверждается ли или опровергается нулевая гипотеза.
- Эти правила оговариваются в описании критерия.

Статистические критерии

• Параметрические критерии

Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (*t* - критерий Стьюдента, критерий F и др.)

Применяются, если распределение признака является нормальным

• <u>Непараметрические</u> <u>критерии</u>

Критерии, не включающие B формулу расчета параметров распределения И основанные на оперировании частотами ИЛИ рангами (критерий Розенбаума, критерий Т Вилкоксона и др.)

Уровни статистической значимости

Уровень значимости - это вероятность отклонения нулевой гипотезы, в то время как она верна.

Правило отклонения Н₀ И принятия Н₁

Если эмпирическое значение критерия равняется критическому значению, соответствующему p < 0.05 или превышает его, то H_0 отклоняется, но мы еще не можем определенно принять H_1 .

Если эмпирическое значение критерия равняется критическому значению, соответствующему p<0,01 или превышает его, то H_0 отклоняется и принимается H_1 .

Рис. 1.7. Пример "оси значимости" для критерия Q Розевбаума

Классификация задач и методов их решения

Задачи	Условия	Методы
Выявление различий в уровне исследуемого признака	2 выборки испытуемых	Q - критерий Розенбаума; U - критерий Манна-Уитни; φ * - критерий (угловое преобразование Фишера)
	3 и более выборок испытуемых	S - критерий тенденций Джонкира; H - критерий Крускала- Уоллиса

Классификация задач и методов их решения

Задачи	Условия	Методы
Оценка сдвига значений исследуемого признака	2 замера на одной и той же выборке испытуемых	T - критерий Вилкоксона; G - критерий знаков; φ * - критерий (угловое преобразование Фишера).
	3 и более замеров на одной и той же выборке испытуемых	 Х_л² - критерий Фридмана; L - критерий тенденций Пейджа

Классификация задач и методов их решения

Задачи	Условия	Методы
Выявление степени согласованнос ти изменений	двух признаков	r _s - коэффициент ранговой корреляции Спирмена.
	двух иерархий или профилей	<i>r_s</i> - коэффициент ранговой корреляции Спирмена.