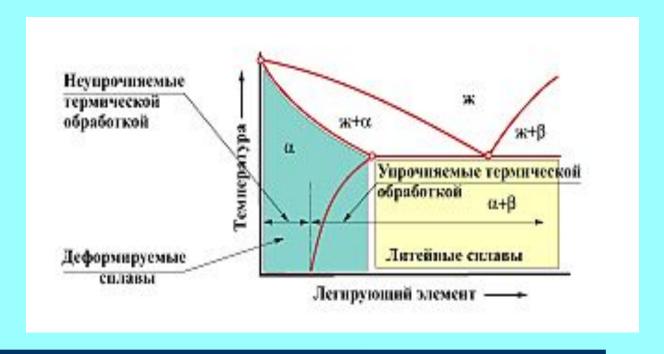


Тема: Цветные сплавы

Казачков Олег Владимирович, доцент, к.т.н.

Институт лесных, инженерных и строительных наук, кафедра транспортных и технологических машин и оборудования **kaz @ psu.karelia.ru**

Алюминий и его свойства


- Плотность -2,7 г/см³
- Температура плавления 660 °C
- Решетка ГЦК, а =0,404 нм
- Хорошая коррозионная стойкость,
 электропроводность
- Маркировка:
- A999, A995, A99, A85, A8, A7, A5, A0
- Технический ал. АД0, АД1

Классификация алюминиевых сплавов

Алюминиевые сплавы

- <u>Деформируемые</u> (термически упрочняемые, термически неупрочняемые)
- Литейные

Хим. состав и мех. свойства сплавов

марка	содерж	ание, %	G MIII	2 0/	
emiana	Mg	Mn	σ _B , MHa	δ,%	
АМц	<0,2	1,0-1,6	130	23	
AMrI	0,7-1,6	<0,2	110	28	
AMr2	1,8-2,6	0,3-0,6	200	23	
AMr3	3,2-3,8	0,3-0,6	220	23	
AMr5	4,8-5,8	0,3-0,8	300	20	
AMr6	5,8-6,8	0,5-0,8	340	18	

Пластичные, коррозионностойкие, свариваемые

Микроструктура АМг1

Дуралюмины (сплавы системы AL-Cu-Mg- Mn)

марка	60.	держание,	%	термическая	о, мпа	8.%	
enriana	Cu Mg Mn		Mn	обработка	B, Mili	0,76	
ді	3,8-4,8	0,4-0,8	0,4-0,8	Закалки от 500-505°C + естественное стирение	400	20	
Д16	3,8-4,9	1,2-1,8	0,3-0,9	Закалка от 495-505°C + естественное старение	440	18	
				Заколка от 495-505°C + старение 190°C, 12ч	440	16	

• Характеристика: высокая прочность при достаточной пластичности, хорошая свариваемость точечной сваркой, малая плотность, удовлетворительная обрабатываемость резанием, низкая коррозионностойкость

Авиали (сплавы системы AL-Mg- Si)

марка сплава		еодеро	кание, %	4	термическая	σ,	δ,%
	Cu	Mg	Mn	Si	обработка	MIIa	
	-0.1	0400	-0.1	4307	Закалка от 510-530°C + естественное старение	170	22
АД31	<0,1	0,4-0,9	<0,1	0,3-0,7	Закалка от 510-530°C + старение 170°C, 12ч	240	12
AB	0,1-0,5	0,4-0,9	0,15-0,35	0,5-1,2	Закалка от 510-530°C + старение 170°C, 12ч	330	14

• Характеристика: высокая пластичность при достаточной прочности, хорошая свариваемость, малая плотность, хорошая обрабатываемость резанием и коррозионностойкость

Ковочные (сплавы системы AL-Cu-Mg- Si)

марка сплава		солерж	ание, %		термическая	σ _n , MHa 400	8,%
	Cu	Mg	Mn	Si	обработка		
AK6	1,8-2.6	1,8-2.6 0,4-0,8	0,4-0,8	0,7-1,2	Заколка от 505-525°C + старение 160°C, 10-15ч		
AK8	3,9-4,8	0,4-0,8	0,4-1,0		E 100 00000		9

• Характеристика: высокая стойкость к образованию горячих трещин при достаточной пластичности, хорошая свариваемость, малая плотность

Высокопрочные (сплавы системы AL-Cu-Mg- Zn)

марка сплава		содерж	кание, %		термическая	σ _B , MHa	ã,%
	Cu	Mg	Mn	Zn	термическая обработка		
B95	1,4-2,0	1,8-2,8	3axn.nca or 460-470°C + crapense 120-140°C, 15-25%		600	8	
B96	2,3 2,7 8,5 старение 120-1		Закалка от 460-470°C + старение 120-140°C, 15-25ч	670	7		

• Характеристика: по сравнению с дуралюминами обладают большей прочностью, но меньшей пластичностью, вязкостью разрушения и большей чувствительностью к концентрациям напряжений и пониженной коррозионной стойкостью

Термическая обработка сплавов

• Сплавы с составом правее F повергаются закалке и старению искусственному при повышенных температурах или естественному при комнатной температуре

Термическая обработка

- Основана на изменении растворимости соединений Cu, Mg, Si, Zn в Al-растворе
- Состоит из 2-ух процессов:
- 1. Закалки- нагрев (500 °C), выдержка, охлаждение в воде.
- Полное растворение соединений и получение перенасыщенного α - тв. раствора
- 2. <u>Старение</u>

2a. <u>естественного</u> (20 ⁰C)

- Распад перенасыщенного α тв. раствора с образованием зон Гинье –Престона - пластинчатых образований
 - **2б. искусственного** (150...200 ⁰C)
- Распад перенасыщенного α тв. раствора с образованием зон Вассермана – кристаллов новой фазы, связанной с кристаллической решеткой α - тв. раствора

Алюминиевые литейные сплавы

морка сплава		C	Термооб-	σ_{n}	200			
	Si	Mg	Cu	Mn	пругие	работка	MIIa	8,%
		Cı	істем	a Al-Si	(силуми)	(M)		
AJI2	10-13		(%)		. 18	2.5	160	1,0
A.14	8-10,5	0,2-0,4	95	0,2-0,4		· T0		3,0
	9	Vic - 51	2	исте	na Al-Cu	50 US		
АЛ7		4,0-5,0		TO	250	5,0		
A.119	. *		4,5-5,3	0,6-1,0	Ti 0,15-0.35	TO	370	5,0
	2	00 10	Cu	стема	Al-Mg	50 (3)		9
A.723	29	6-7,0	-		Ti 0,05-0.15 Zr 0,05-0.2 Be 0,02-0.1	-	200	4,0
A.327	1 10	9,5-10,5	33 2	3	Ti 0,05-0.15 Zr 0,05-0.2 Be 0,05-0.1	TO	360	18,0

Модифицирование сплавов

- <u>Модификатор</u> вещество, малые дозы которого существенно изменяют структуру и свойства обработанного ими сплава.
- Эффект от такой обработки наз. модифицированием.
- Силумин до модифицированияЗаэвтектический сплав (стр-ра-эвт + кремний)
- Силумин после модифицирования-Доэвтектический сплав(стр-ра-эвт + алюминий) $\sigma_{\text{\tiny B}}$ = 140 __180МПа, δ =3___8%

Порошковые (спеченные) алюминиевые сплавы

Спеченные сплавы

Спеченный алюминиевый порошок (САП)

Спеченный алюминиевый сплав (САС)

- САП –получают холодным, затем горячим брикетированием пудры при 500°С с последующей деформацией. Состав :САП-1 (AL₂O₃ -6…9%) до САП -4 (AL₂O₃ -18…22%) Свойства: хорошая свариваемость, повышенная жаропрочность, высокая теплопроводность и электропроводность, низкая плотность
- САС получают горячим брикетированием порошков окисленных алюминиевых сплавов при 500°С с последующей деформацией. Состав: САС-1 (30 % -Si, 7%- Ni, остальное Al) Свойства: обладают низким коэф. линейного расширения, удовл. прочностью, жаропрочны, малопластичны, высоким модулем упругости

Основные выводы

- Алюминий -цветной легкий металл, обладающий высокой электропроводностью, теплопроводностью, коррозионной стойкостью
- В качестве конструкционных материалов широко используются алюминиевые сплавы: деформируемые, литейные, порошковые, например, дуралюмины, магналии, силумины, высокопрочные и жаропрочные сплавы, спеченные сплавы
- Для улучшения свойств литейных сплавов проводят модифицирование – присадку в жидкий расплав фтористого и хлористого натрия
- Для улучшения свойств деформируемых сплавов проводят термическую обработку закалку, а затем искусственное или естественное старение.

Медь и ее свойства

- Плотность 8,94 г/см³
- Температура плавления

 1083 °C
- Решетка ГЦК, а = 0,36 нм
- Хорошая коррозионная стойкость, тепло электропроводность 100%
- Маркировка:
- M00, M0, M1, M2, M3, M4

Классификация медных сплавов

Медные сплавы

Латуни

Бронзы

- Латуни медные сплавы, в которых основным лег. элементом является цинк
- Бронзы –сплавы меди с любым другим металлом, кроме цинка как основного лег. элемента

Классификация сплавов по технологическому признаку

Медные сплавы

литейные

деформируемые

- Основным способом производства изделий из литейных сплавов литье
- Основным способом производства изделий из деформируемых сплавов – обработка давлением

Маркировка латуней

Буквенные обозначения

Α	Б	Ж	Мг	Мц	К	Ц	0	Н	Ф	С	Л-латунь
Al	Be	Fe	Mg	Mn	Si	Zn	Sn	Ni	Р	Pb	Бр- бронза

- Литейная латунь ЛЦ16К4 (Zn-16%, Si-4%, остальное медь)
- Деформируемая латунь ЛМцА 57-3-1 (Си-57%, Мп-3%, АІ-1%. остальное цинк)
- Литейная бронза БрА11Ж6Н6 (AI -11%, Fe-6%, Ni-6%, остальное медь)
- Деформируемая бронза БрАЖН 10-4-4 (АІ -10%, Fe-4%, Nі-4%, остальное медь)

Классификация латуней по составу

латуни

Простые (двойные) Многокомпонентные (специальные)

Простые (двойные) латуни

- Являются деформируемыми латунями, хорошо обрабатываются давлением как в холодном, так и в горячем состоянии
- Не имеют фазовых превращений, не упрочняются термической обработкой
- Применение: радиаторные и конденсаторные трубки (Л96, Л90), гибкие шланги, прокладки (Л85, Л80), гайки, болты, детали автомобиля (Л68), толстостенные детали (Л59)
- Маркировка: по ГОСТ 17711-80
- Л96,Л90 (томпаки),Л85,Л80 (полутомпаки), Л70, Л68

Многокомпонентные латуни

- Это двухфазные латуни с добавками легирующих элементов—Al, Fe, Ni, Sn, Mn, Pb
- Лег.элементы (кроме Pb) увеличивают прочность, твердость, коррозионную стойкость, ухудшают пластичность
- Рb улучшает обрабатываемость (автоматная латунь) ЛС 59-1, ЛС 63-3, ЛС 74-3
- Sn улучшает коррозионную стойкость (морская латунь) ЛО 70-1, ЛО 62-1
- Al, Ni повышают мех.свойства ЛАН 59-3-2

Область применения оловянных бронз

• Литейные бронзы

Изготавливают пароводяную арматуру, антифрикционные детали типа втулок, венцов червячных колес, вкладышей подшипников, художественное литье

• Деформируемые бронзы

Изготавливают прутки, трубы, ленту, проволоку для пружин, детали с упругими, антикоррозионными, антифрикционными в различных отраслях промышленности.

Область применения безоловянных бронз

- Свинцовые бронзы –антифрикционный материал. Для отливок вкладышей подшипников скольжения, втулок
- Алюминиевые бронзы заменитель оловянных бронз. Для мелких, но ответственных деталей типа шестерен, втулок, фланцев, монет
- Кремнистые бериллиевые бронзы пружинный материал.

Классификация медно-никелевых сплавов

Медно-никелевые сплавы

Высокопрочные коррозионностойки е

электротехнически е

Электротехнические медно-никелевые сплавы

- Копель- сплав, содержащий 43%Ni, 0,5%Mn (МНМц 43–0,5). Применяется в пирометрии в качестве термоэлектрода термопар в паре с хромелем до 600°C
- Константан сплав, содержащий 40%Ni, 1,5 %Mn (МНМц 40-1,5). Характеризуется постоянным ρ в зависимости от температуры
- Манганин сплав, содержащий 3%Ni, 12 %Mn (МНМц 3-12). Характеризуется постоянным ρ в области комнатных температур, изготавливают эталонные сопротивления и элементы измерительных приборов, предложен в 1889

Основные выводы

- Медь -цветной полублагородный металл, обладающий высокой электропроводностью (100%), теплопроводностью, коррозионной стойкостью
- В качестве конструкционных материалов широко используются сплавы: деформируемые, литейные, например, бронзы, латуни, медно никелевые сплавы.