# **ТРАНСПОРТНАЯ ЗАДАЧА**

Информатика и ИКТ 11 класс

§ 3.4.2

# Транспортная задача

Задача составления плана перевозок от поставщиков к потребителям с помощью некоторых транспортных средств.

Составленный план должен обеспечивать выполнение таких условий, как:

- полное удовлетворение спроса потребителей;
- вывоз всей продукции от поставщика;
- минимизация транспортных затрат.

## Постановка задачи

Известно, что на складах имеется запас муки в количестве 45, 100, 20, 75 мешков.

А магазины имеют потребность в этом товаре в количестве 30, 80, 95, 35 мешков.

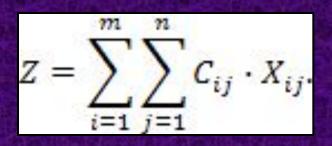
## Стратегическая цель

Перевозку груза надо организовать таким образом, чтобы суммарные затраты на перевозки были минимальными.

## Математическая модель

В m пунктах отправления (складах)  $A_{l}$ ,  $A_{2}$ , ...,  $A_{m}$  находится однородный груз в количестве  $a_{l}$ ,  $a_{2}$ , ...,  $a_{m}$  единиц соответственно.

Потребность в этом грузе в n пунктах назначения (магазинах)  $B_1$ ,  $B_2$ , ...,  $B_n$  составляет  $b_1$   $b_2$ , ...,  $b_n$  соответственно.


Будем считать, что сумма запасов на складах равна суммарным потребностям в магазинах, т.  $\frac{m}{m}$ 

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j.$$

Такая модель называется замкнутой.

## Анализ задачи

Суммарные затраты на перевозки Z определяются следующим образом: необходимо просуммировать все объемы перевозок груза, умноженные на соответствующие удельные затраты, т. е.



Суммарные затраты являются целевой функцией.

## Табличная модель

| Потребность в<br>магазине |                      | Магазин<br>№ 1      | Магазин<br>№ 2      | Магазин<br>№ 3      | Магазин<br>№ 4      |
|---------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Запас<br>муки             |                      | b <sub>1</sub> = 30 | b <sub>2</sub> = 80 | b <sub>3</sub> = 95 | b <sub>4</sub> = 35 |
| Склад<br>№ 1              | $a_1 = 45$           | 6                   | 3                   | 7                   | 10                  |
| Склад<br>№ 2              | a <sub>2</sub> = 100 | 10                  | 4                   | 12                  | 10                  |
| Склад<br>№ 3              | a <sub>3</sub> = 20  | 5                   | 9                   | 8                   | 11                  |
| Склад<br>№ 4              | a <sub>4</sub> = 75  | 4                   | 2                   | 4                   | 8                   |

Ячейки, выделенные фоном, содержат удельные стоимости перевозок  $C_{ii}$ .

## Математический анализ

### Проверим замкнутость модели

Для этого просуммируем все запасы муки на складах: 45 + 100 + 20 + 75 = 240. Найдем суммарные потребности магазинов в MYKe: 30 + 80 + 95 + 35 = 240.

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j.$$
 Ограничения

## Математический анализ

Весь груз со складов должен быть вывезен.

$$\begin{cases}
X_{11} + X_{21} + X_{31} + X_{41} = b_1 \\
X_{12} + X_{22} + X_{32} + X_{42} = b_2 \\
X_{13} + X_{23} + X_{33} + X_{43} = b_3 \\
X_{14} + X_{24} + X_{34} + X_{44} = b_4
\end{cases}$$

удовлетворяет спроса магазинов

Вывоз всего груза со складов достигается при выполнении системы уравнений:

$$\begin{cases} X_{11} + X_{12} + X_{13} + X_{14} = a_1 \\ X_{21} + X_{22} + X_{23} + X_{24} = a_2 \\ X_{31} + X_{32} + X_{33} + X_{34} = a_3 \\ X_{41} + X_{42} + X_{43} + X_{44} = a_4 \end{cases}$$

## Математическая модель

$$\begin{cases} X_{11} + X_{21} + X_{31} + X_{41} = b_1 \\ X_{12} + X_{22} + X_{32} + X_{42} = b_2 \\ X_{13} + X_{23} + X_{33} + X_{43} = b_3 \\ X_{14} + X_{24} + X_{34} + X_{44} = b_4 \end{cases}$$

$$\begin{cases} X_{11} + X_{21} + X_{31} + X_{41} = b_1 \\ X_{12} + X_{22} + X_{32} + X_{42} = b_2 \\ X_{13} + X_{23} + X_{33} + X_{43} = b_3 \\ X_{14} + X_{24} + X_{34} + X_{44} = b_4 \end{cases} \begin{cases} X_{11} + X_{12} + X_{13} + X_{14} = a_1 \\ X_{21} + X_{22} + X_{23} + X_{24} = a_2 \\ X_{31} + X_{32} + X_{33} + X_{34} = a_3 \\ X_{41} + X_{42} + X_{43} + X_{44} = a_4 \end{cases}$$

Среди этих решений интерес представляют неотрицательные решения, при которых суммарные затраты по всем маршрутам будут минимальны, т. е. целевая функция может быть представлена следующим образом:

$$Z = C_{11} \cdot X_{11} + \dots + C_{14} \cdot X_{14} + C_{21} \cdot X_{21} + \dots + C_{24} \cdot X_{24} + C_{31} \cdot X_{31} + \dots + C_{34} \cdot X_{34} + C_{41} \cdot X_{41} + \dots + C_{44}$$

$$\cdot X_{44}$$

## Математическая модель

#### Ограничения:

Первое ограничение – по уровню потребления:

второе – по уровню запасов

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

Решение с помощью электронных таблиц

# Компьютерная модель

Учебник стр. 104-107