МОДЕЛИРОВАНИЕ ТЕПЛОВЫХ ПРОЦЕССОВ В РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВАХ

ИЕРАРХИЧЕСКИИ ПОДХОД К МОДЕЛИРОВАНИЮ ФИЗИЧЕСКИХ ПРОЦЕССОВ В РЭУ

Программные средства для моделирования электрических процессов в РЭУ

Программные средства PCAD; OrCAD; PSB Systems "Mentor Graphics"; Altium Designer (Protel); CADSTAR "ZUKEN"; Micro-Cap

Общие черты: Основаны на ядре Spice; Позволяют организовать сквозной цикл проектирования ПП

Проблемно-ориентированные программные средства для моделирования тепловых процессов в РЭУ

Универсальные программные средства для моделирования тепловых процессов в РЭУ

Программные средства для моделирования гидроаэродинамических процессов в РЭУ

Программные средства для моделирования механических процессов в РЭУ

Моделирование в процессе автоматизированного проектирования

Под моделью аппаратуры, понимается представленное в той или иной форме математическое описание, которое адекватно отражает сущность и характерные свойства рассматриваемого физического процесса, протекающего в схеме и конструкции аппаратуры.

Модель электрических процессов

Электрическими называются модели РЭС, отображающие процессы, протекающие в принципиальных схемах аппаратуры с учетом паразитных параметров конструкций.

Модель тепловых процессов

Моделью тепловых процессов называется, представленная в виде ненаправленного графа, схема путей распространения тепловых потоков в конструкции.

Рис.2. Вид модели тепловых процессов

Пример влияния тепловых процессов на электрические

Рис.1. Электрическая принципиальная схема

 С увеличением температуры транзистора с 25°С до 40°С, т.е. всего на 15°С, рабочая точка транзистора сместилась в сторону насыщения и, следовательно, входной сигнал усиливается с искажениями.

Рис.2. Результаты моделирования при T=25°C

Рис.3. Результаты моделирования при T=40°С

Модель механических

Механическими назраются СССАВ РЭС, отображающие процессы, протекающие в конструкциях аппаратуры при воздействии ударов и вибраций.

Рис. 4. Графики ускорений в контрольных точках 15

Схема алгоритма методики моделирования

16

Аналогии в математическом описании физических

Физический процесс	ПОХаркерства Деременная)			
	Узлы	Ветви		
Электричество	Напряжение (потенциал)	Ток, напряжение (перепад напряжения)		
Тепло	Температура	Тепловой поток		
Аэродинамика	Давление	Скорость и расход воздуха		
	Перемещение	Производная силы		
Механика	Скорость	Сила		
	Ускорение	Импульс силы		

Универсальное	Электрическая	Тепловая	Аэродинамическая	Механическая
обозначение	цепь	цепь	цепь	цепь
Диссипативный	Сопротивление	Тепловое сопротивления:	Аэродинамическое	Демпфирование
компонент		- кондукция;	сопротивление:	
		- конвекция (ЕК и ВК);	- местные;	
		- излучение.	- трения.	
Консервативный	Ёмкость	Теплоёмкость	Аэродинамическая	Macca
компонент І-го рода			ёмкость	
Консервативный	Индуктивность	-	-	Податливость
компонент II-го рода				
Активный	Источник тока	Источник мощности	Расход воздуха	Источник
потенциальный				скорости
компонент				
Активный	Источник	Источник температуры	Источник давления	Источник силы
потоковый	напряжения			
компонент				

Топологическая форма представления математических

Компоненты моделей электрических процессов

N⁰	Название и	Тип компонента и параметры ветви
п/п	обозначение ветви	
1.	Электрическое	Диссипативный,
	сопротивление,	r – электрическое сопротивление ветви
	<i>i</i> ∙ ^{Rn} • <i>j</i>	
2.	Электрическая емкость,	Консервативный I рода,
	. +11 ^{Cn} .	<i>с</i> – электрическая емкость ветви.
	<i>I</i> ●──┤ ──● <i>J</i>	
3.	Индуктивность,	Консервативный II рода,
	Ln	l — индуктивность ветви.
	i •'∕ ∨ ∨ \•j	
4.	Источник тока,	Активный потоковый,
	<i>i</i> •	<i>i</i> – ток ветви.

	Компоненты моделей						
	электрических процессов						
№ п/п	Название и ро обозначение ветви	должение) параметры ветви					
5.	Источник тока, управляемый током ветви Iin $k = k$ k = k k = k k = k	Активный потоковый, <i>i</i> – ток в ветви R ^э включенной между узлами <i>k</i> и <i>l</i> ; <i>µ</i> – коэффициент управления.					
6.	Источник тока, управляемый напряжением в ветви IUn	Активный потоковый, <i>u</i> – напряжение в ветви R ^Э включенной между узлами <i>k</i> и <i>l</i> ; <i>µ</i> – коэффициент управления.					

Компоненты моделей электрических процессов

Топологические модели резисторов

Для области высоких частот

R — сопротивление резистора;
 L_R — индуктивность выводов и проводящей части резисторов;
 C_R – ёмкость выводов и проводящей части резисторов

Для диффузионных резисторов интегральных

С_n – ёмкость проводящей части относительно подложки (включая ёмкость обратносмещённого паразитного p-n перехода)

Топологические модели

конденсаторов

Для области низких

В широкополосной

Интегральный конденсатор, построенный на структуре металл-диэлектрикполупроводник

R_c — сопротивление потерь в диэлектрике; L_c — индуктивность выводов и обкладок конденсатора; r_c — сопротивление последовательного слоя в структуре конденсатора;

I_п=f(Un) — зависимый источник, моделирующий статическую характеристику паразитного р-п перехода;

- С_п емкость р-п перехода;
- П^{′′}— подложка

Топологические модели индуктивностей

Для области низких частот Спиральная катушка индуктивности интегральных схем

- *R*, сопротивление обмотки (спирали);
- С, межвитковая емкость;
- *R_и сопротивление потерь межвитковой изоляции;*
- С_п емкость между спиралью и подложкой П.

Компоненты моделей тепловых

№ п/п	Название и обозначение ветви	Параметры ветви	Пример
	ВЕТВИ, МОДЕЛИР	УЮЩИЕ ТЕПЛОПЕРЕДА	ЧУ КОНДУКЦИЕЙ
1	Заданное тепловое сопротивление R1-n ј • • ј	R – заданное тепловое сопротивление.	Пример – заданное тепловое сопротивление «переход- корпус» у полупроводнико- вого прибора.
2	Вычисляемое тепловое сопротивление в декартовой системе координат R2-n j•j	 λ – коэффициент тепло- проводности материала; a, b – геометрические размеры, площадь поперечного сечения тела, через которую проходит тепловой поток; l – длина тела в направлении прохождения теплового потока 	
3	Вычисляемое тепловое сопротивление в цилиндрической системе координат (радиальное направление) R3-N i • <u>-R-</u> • j	λ – коэффициент тепло- проводности материала; d ₁ – внутренний диаметр цилиндра; d ₂ – внешний диаметр цилиндра; l – высота цилиндра.	

Компоненты моделей

тепловых процессов (продолжение)

Nº	Название и	Параметры ветви	Пример
п/п	обозначение ветви		ideb (d. L) .
	ВЕТВИ, МОДЕЛИ	ИРУЮЩИЕ ТЕПЛООБМЕ	Н ИЗЛУЧЕНИЕМ
9	Тепловое излучение с неразвитой поверхно- сти R16-N i	 <i>a</i>, <i>b</i> – геометрические раз- меры поверхности; <i>ε</i> – приведенная степень черноты поверхностей тел; <i>ζ</i> – приведенный коэффициент облученности поверхностей тел 	
10	Тепловое излучение с неразвитой цилиндри- ческой поверхности R19-N i ● √ <i>R</i> № ∮	 d – диаметр цилиндра. h – высота цилиндра; ε – приведенная степень черноты поверхностей тел; ζ – приведенный коэффициент облученности поверхностей тел 	

Компоненты моделей

тепловых процессов (продолжение)

Компоненты моделей тепловых процессов

(продолжение)

Nº	Название и	Параметры ветви	Пример
п/п	обозначение ветви		2
BET	ГВИ, МОДЕЛИРУЮІ	ЦИЕ ИСТОЧНИКИ ТЕПЛ	ОВЫХ ВОЗДЕЙСТВИЙ
22	Источник постоянной	<u>р</u> – мощность	
	мощности	тепловыделения.	
	<i>i</i> • ₽ ₽ 101-n		
23	Источник постоянной температуры <i>і</i> • Т111-п	<i>ţ</i> - температура.	

Модели резистора, конденсатора,

ИНДУКТИВНОСТИ Аналитическими моделями идеальных резистора, конденсатора и

Аналитическими моделями идеальных резистора, конденсатора и катушки индуктивности являются уравнения:

$$U = RI$$
 , $I = C \frac{dU}{dt}$, $U = L \frac{dI}{dt}$, ^{где}

- *U* напряжение на элементе;
- /- ток через элемент;
- *R* сопротивление резистора;
- С емкость конденсатора;
- L индуктивность катушки

Топологические модели радиоэлементов

Резистор

Конденсатор

Катушка индуктивности

Модели зависимых источников

Четыре типа зависимых источников:

- источник тока, управляемый напряжением,
- источник напряжения, управляемый напряжением,
- источник тока, управляемый током,
- источник напряжения, управляемый током.

$$I_S = gU$$
, $U_S = eU$, $I_S = fI$, $U_S = hI$

U_S — напряжение источника, I_S — ток источника, U, I — управляющее напряжение и ток, g, e, f, h — соответствующие коэффициенты

	Мо	дель биполярного
	т	транзистора
e e C		$U_{ce}=0 \qquad U_{ce}>0 \qquad I_c \qquad I_b \qquad $
Обозн.	Наименование параметра	U_{eb} U_{ce} U_{eb} U_{cb}
$I_{se, sk}$	Токи насыщения эмиттера и коллектора	Рис. 1. Входные ВАХ Рис. 2. Выходные ВАХ Рис. 3. ВФХ pn-переходов
$mV_{te,} mV_{tc}$	Температурные потенциалы эмиттера и коллектора	$I_{N} = I_{\infty} \left(\mathbf{e}^{\frac{U_{eb}}{mV_{te}}} - 1 \right) , C_{eb} = \frac{\tau_{e}}{mV_{te}} I_{N} + C_{0e} \left[\frac{\Psi}{\Psi - U_{eb}} \right]^{n_{e}},$
$\beta_{N,}\beta_{I}$	при прямом и инверсном включении в схеме с ОЭ	$\left(\begin{array}{c} U_{cb} \\ \hline \end{array}\right) \qquad \tau \qquad \left[\begin{array}{c} \Psi \\ \end{array}\right]^{n_c}$
Ψ	Контактная разность потенциалов	$I_{I} = I_{sk} \left[e^{mV_{tc}} - 1 \right] . C_{cb} = \frac{V_{c}}{mV_{c}} I_{I} + C_{0c} \left[\frac{1}{\Psi - U_{cb}} \right] .$
<i>V_N</i> , <i>V</i> _{<i>I</i>}	Коэффициенты усиления по напряжению при прямом и инверсном включении в схеме с ОЭ	$J = B_N I_N + B_I I_I$
$ au_{N,} au_{I}$	Постоянные времени при прямом и инверсном включении	$B_{N} = \beta_{N} + \frac{U_{cb}}{M}$ $B_{L} = \beta_{L} + \frac{U_{eb}}{M}$
C_{0e}, C_{0c}	Барьерные емкости эмиттера и коллектора при нулевом смещении	
n _e ,n _c	Показатели степени в уравнениях барьерных емкостей	режимах исключая пробой 38

Модель полевого транзистора

$$I_{D} = \begin{cases} 0, \Rightarrow U_{gs} - V_{t0} < 0 \\ \beta (1 + \lambda U_{ds}) (U_{gs} - V_{t0})^{2}, \Rightarrow 0 < U_{gs} - V_{t0} < U_{ds} \\ \beta (1 + \lambda U_{ds}) U_{ds} [2 (U_{gs} - V_{t0}) - U_{ds}] \Rightarrow_{gs} - V_{t0} > U_{ds} \end{cases}$$

Рис. 1. Модель полевого транзистора

Рис. 2. Выходные ВАХ

К Модель описывает работу транзистора во всех режимах исключая пробой

Макромодель операционного

Рис. 2. Характеристика вход-выход

Область определения модели выделена серым прямоугольником

Моделирование тепловых процессов в конструкциях РЭС

- Задачей моделирования тепловых процессов является определение температур элементов конструкции, поскольку именно она является одной из основных характеристик состояния вещества, и, именно, от нее зависят его механические и электрические свойства.
- Уменьшение размеров и веса аппаратуры, применение интегральных микросхем, жесткие условия эксплуатации, часто при повышенной температуре окружающей среды - осложняет задачу обеспечения правильного теплового режима.

При изменении температуры всего на несколько десятков градусов электропроводность кремния, основного вещества из которого изготавливают полупроводниковые элементы, изменяется в сотни раз.

Особенности конструкции с точки зрения тепловых

Рис. 1. Пример кассетной конструкции Рис. 2. Пр

Рис. 2. Пример этажерочной конструкции

- При конструировании РЭС в зависимости от сложности и степени интеграции применяется конструкции кассетного и этажерочного типа.
- Основными конструктивным и, как правило, функциональным узлом таких конструкций являются печатные узлы (ПУ), представляющие собой однослойные или многослойные печатные платы (ПП) с расположенными на них микросборками и дискретными электрорадиоэлементами (ЭРЭ).
- При наличии мощных полупроводниковых приборов применяется их установка на корпус блока, который в этом случае выполняется оребренным.
- Корпуса и несущие конструкции блоков изготавливаются из алюминиевых и магниевых сплавов, обладающих хорошими теплопроводящими свойствами и сравнительно небольшим удельным весом.

Топологические модели тепловых процессов

Топологической моделью тепловых процессов называется, представленная в виде ненаправленного графа, схема путей распространения тепловых потоков в конструкции.

Построение модели тепловых процессов сводится к выполнению следующих этапов:

- 1. Качественный анализ тепловых процессов в конструкции, на основе которого определяются элементарные виды теплообмена, которые необходимо учитывать при построении модели.
- 2. Идеализация конструкции, позволяющая существенно упростить задачу построения модели за счет принятия определенных допущений.
- 3. Составление модели тепловых процессов конструкции, заключающееся в построении топологической модели с учетом проведенного анализа и идеализации.

Теплопроводностью называется передача кинетической энергии

теплопровооностью называется переоача кинетической энергий хаотического движения молекул от нагретого участка тела к холодному.

Кондуктивный теплообмен - распространение тепла в твердом теле

$$\varphi_i \bullet \qquad \bullet \varphi_j$$

$$Y_{ij}^{x} = \frac{\lambda_{x} S_{yz}}{l_{x}}, Y_{ij}^{y} = \frac{\lambda_{y} S_{xz}}{l_{y}}, Y_{ij}^{z} = \frac{\lambda_{z} S_{xy}}{l_{z}},$$

λ – коэффициент теплопроводности,
Блющадь поперечного сечения ,
Длина .

Теплопроводность. Контакт

Контактный теплообмен - передача тепла от одного тела другому при их непосредственном контакте.

Вадиус контакта , **ацые**йные размеры контакта

Конвекция

• Конвекцией называется передача тепла движущейся жидкостью или газом.

 α_k — коэффициент конвективной теплоотдачи; блющадь поверхности .

Излучение

Излучением называется передача тепла при испускании и поглощении электромагнитных

 $Y_{ii} = \alpha_L S$

α_L – коэффициент лучистой теплоотдачи; **Б**лөщадь поверхности .

Перенос тепла воздухом в плоском воздушном канале

 $\varphi_i \bullet \varphi_j$

$$\psi_{ij} = C_p G_m (\varphi_i - \varphi_j)$$

 C_p – удельная теплоемкость воздуха, G_m – массовый расход воздуха.

Пример построения тепловой модели

Металлическая пластина малой толщины с пленочным нагревателем на одной из сторон расположена в воздухе с температурой *t*.

Рис. 1. Металлическая пластина

Идеализация конструкции:

- 1. Пренебрегаем теплоотдачей с торцов пластины, т.к. площадь торцевых поверхностей пластины значительно меньше площади ее боковых поверхностей.
- 2. Считаем левую (1) и правую (2) поверхности пластины изотермичными.
- 3. Пренебрегаем тепловым излучением с пластины в окружающую среду.

С учетом принятых допущений модель теплового процесса имеет вид, представленный на рис. 2. 49

Рис. 1. Модель тепловых процессов

$$\begin{cases} (Y_{12} + Y_{13})\varphi_1 - Y_{12}\varphi_2 - Y_{13}\varphi_3 = 0 \\ -Y_{12}\varphi_1 - (Y_{12} + Y_{23})\varphi_2 - Y_{23}\varphi_3 = \psi_2 \\ -Y_{13}\varphi_1 - Y_{23}\varphi_2 - (Y_{13} + Y_{23})\varphi_3 = \psi_3 \end{cases}$$

50

,

Рис. 1. Эскиз конструкции

Рис. 2. Модель элементарного объема

- Объем твердотельный, например, монолитный (залитый) блок;
- Мощность Р выделяется в центре элементарного объема (узел 1);
- Каждая грань объема (узлы 2...7) изотермична.

Тепловая модель ЭРЭ на печатной плате

Рис. 1. Эскиз крепления резистора

Рис. 2. Эскиз транзистора

Рис. 3. Фрагмент печатного узла

Рис. 4. Модель ЭРЭ на печатной плате

- 1. Активная зона;
- 2. Поверхность корпуса;
- 3. Поверхность платы;
- 4. Окружающая среда.

Тепловая модель транзистора на одностороннем ралиаторе.

Рис. 1. Эскиз конструкции

Рис. 2. Ребристый радиатор

К Теплоотдача с торцев основания радиатора не учитывается.

- . pn переход транзистора;
- 2. Корпус транзистора;
 - . Верхняя поверхность радиатора;
- 4. Нижняя поверхность радиатора;
 - . Окружающая среда.

Тепловая модель микросборки на печатной плате

Рис. 1. Эскиз конструкции микросборки

Рис. 2. Конструкция микросборки

Поверхность корпуса изотермична; Поверхность основания изотермична.

Рис. 3. Модель микросборки на печатной плате

- 1. Поверхность подложки.
- 2. Поверхность корпуса.
- 3. Поверхность печатной платы.
- 4. Окружающая среда.

Моделирование тепловых процессов в микросборке

Рис. 1. Эскиз конструкции микросборки

- 1 8 зоны на подложке;
- 9 транзистор VT;
- 10 основание микросборки

Рис. 2. Модель тепловых процессов в ПУ

Моделирование тепловых процессов в печатном узле

Рис. 2. Фрагмент печатного узла

Рис. 3. Модель тепловых процессов в ПУ

Пример расчета тепловых процессов

Рис. 1. Эскиз печатного узла

Ni n/n	Обозначение ЭРИ	Crupona	Температура ЭРИ		Коэффициент	
			Расчетная, [°С]	Максимальная допустимая по ТУ, [°C]	тепловой нагрузки, [отп. ел.]	Teperpen, [°C]
1	C1	1	105.046	100.000	1.050	5.046
2	C10	1	104.714	100,000	1.047	4.714
3	C11	1	105.581	100.000	1.056	5.581
4	C16	1	104.855	100.000	1.049	4,855
5	C17	1	105.048	100.000	1.050	5.048
6	C18	1	104.718	100.000	1.047	4.718
7	C2	1	105.114	100.000	1.051	5.114
8	C21	1	105.104	100.000	1.051	5.104
9	C22	1	105.280	100.000	1.053	5.280
10	C24	1	105.270	100.000	1.053	5.270

Рис. 3. Карта тепловых режимов ЭРИ

Рис. 2. 3D модель печатного узла

Рис. 4. Температурное поле печатного узла

пример моделирования тепловых процессов системы радиатор-

Температура окружающей среды - 75°С. Тепловая мощность транзистора - 3 Вт. Коэффициент конвективной кристалла теплоотдачи среды - 5Вт/м°С. Коэффициенты теплопроводности: кристалла - 83Вт/м°С; подложки транзистора - 330Вт/м°С; корпуса транзистора - 0,25Вт/м°С; медного радиатора - 330Вт/м°С. Толщина стенок радиатора - 0,8 мм.

Рис. 1. Эскиз конструкции

Рис. 2. Результаты моделирования