Web Services
part 1

<epam> |



Agenda

Part 1

* What Are Web Services?
* Services are everywhere. Why?
* Web-services and SOA

 History of Web-services
* XML-RPC

<epam> |



What Are Web Services?

“Web service is a software system designed to support interoperable

machine-to-machine interaction over a network”
By W3C

“Web Services are technology that allows applications to communicate
with each other, regardless of the environment via protocols and web
interfaces.”

By Wiki

<epam> |



Web site vs Web service

Web Site

"Human-oriented".
Graphical user interface (GUI).

Wcenegosmee 17% Genopycon e’ we roTOBL BIMMOLENC TBOBATS ¢
MROQLAR C IHBATMNOC Thi0

EnmeT s80anT siosest pesaat 2nR GenopyCCam Typi 108

TOMYNADHLIE HL%E DENOBOPH! O KPVNICE 1 ACBABOIIH NOPORANOT NI BNONITE AEHERIGIE HEIKONNEHE TaK VTOOL! He
NOTEPATE VX NOKYNATENBCKYI0 CNOCOGHOC T KaK NPISEITL NPABINILMLIE IHBEC THPIOM®E DEWerss PaXOPATLCA 8
MHOrOOOPA WM HAEOBC IO C TPAXOBBE YTyt 1 MENera?

Web Service

Software-oriented.
® Thus, no GUI / visuals.

CONFIDENTIAL 4

<epam> |




Web Service View

Get chart Financials
300 x 200 Web
PX Service
Get chart Charts

190 x 400 Web

pPX Service

Get chart Pre(;rebnc
250 x 400 o

o ervice

<epamm>

| CONFIDENTIAL )




Data aggregation services

Public / Private /
external internal

“Everything
” Web
Service

<epam>

| CONFIDENTIAL 6




Services are everywhere. Why?

Database
Server

Desktop
| Application

Web
Application

File Server

CONFIDENTIAL 7

<epam> |




Services are everywhere. Why?

Reason #1: Common API ﬂ

Web services are platform-independent.

Different (often incompatible) platforms \Q/
can talk to each other via web service. [’y " Web Service

<epam> |



Services are everywhere. Why?

Reason #2: High compatibility

Web services often use simple trusted
technologies - XML and HTTP.

HTTP (port 80) is often open even in
high-security systems and firewalls.

<epam> |



Services are everywhere. Why?

Reason #3: Black box @ Poabase

§
Internal implementation is hidden 2N o
from clients. Applicatign
Internal system(s) may be developed, Web Service
tested, upgraded and deployed s

separately.

‘\-\ he Web
\ Application

<epam> |



Services are everywhere. Why?

Reason #4: Security Database

Server

Web service API defines allowed
manipulations.

Web Service | .-
This provides limited access to

internal systems.

File Server

<epam> |



Benefits

* Open infrastructure
 Platform and language transparency
* Modular design

<epam> |



Web services and SOA

Integrating network-accessible services, which are interoperable
because each has an interface that clearly defines the operations
encapsulated in the service.

System, services as building block components may be characterized as
unassociated and loosely coupled.

<epam> |



History of Web-services

early 1990s | DCE/RPC

< Bpam > | CONFIDENTIAL 14




History of Web-services > DCE/RPC > IDL

/* echo.idl */
[uuid(2déead46-05e3-11ca-7dd1-426909beabcd), version(1.0)]

interface echo {
const long int ECHO_SIZE = 512;

void echo(
[in] handle_t h,
[in, string] idl_char from_client] ],
[out, string] idl_char from_server[ECHO_SIZE]

);

<epam> |



History of Web-services

early 1990s | DCE/RPC
won L MSRPC

<epam> |



History of Web-services

early 1990s | DCE/RPC
" b MSRPC
October 1991 L CORBA

<epam> |



History of Web-services

early 1990s
soon
October 1991
1993

<epam> |

DCE/RPC
MSRPC
CORBA
COM/OLE



History of Web-services

early 1990s | DCE/RPC
N L MSRPC
October 1991 L CO RBA
93 L COM/OLE
93 L MSRPC + COM/OLE = DCOM

<epam> |



History of Web-services

early 1990s | DCE/RPC
" & MSRPC
October 1991 L CO RBA
3 L COM/OLE
P53 L MSRPC + COM/OLE = DCOM
%L XML-RPC

<epam> |



History of Web-services > XML-RPC

Request Response
<?xml version="1.0" encoding="150-8859-1"7> <?xml version="1.0" encoding="150-8859-1"7>
<methodCall> <methodResponse>
<methodName>stock.getPrice</methodName> <params>
<params> <param>
<param> <value><double>34.5</double></value>
<value><string>IBM</string></value> </param>
</param> </params>
</params> </methodResponse>
</methodCall>

| CONFIDENTIAL 21

<epam>




History of Web-services > XML-RPC > Datatypes

* Integer: <i4> or <int>

* Boolean: <boolean> with value of 0/1 or true/false

» String: <string>

* Double: <double>

 Date/time: <dateTime.iso8601>19980717T14:08:55</dateTime.iso8601>
* Baseb64: <baseb64>

« Struct:

<struct>
<member>
<name>something</name>
<value><i4>1</i4></value>
</member>
</struct>
* Array:
<array>
<data>
<value><i4>1404</i4></value>
<value><string>Some string</string></value>
</data>
</array>

* Nil: <nil/>

| CONFIDENTIAL )

<epam>




History of Web-services > XML-RPC vs DCE/RPC

XML-RPC DCE/RPC
* Text * Binary
« HTTP (later SMTP) * Any other

non-Java types Convert XML Convert | Javatypes RMI BenefitsService stub download RMI
to XML to Java client server

<epam> |



Benefits and drawbacks

Benefits

* Robust standard with long history and solid support from nearly all programming languages
« XML-RPC doesn’t need in general any additional “contract” like WSDL, WADL etc.

« XML-RPC supports all basic datatypes “out of box”

Drawbacks
« XML is too verbose (in comparison with JSON)
« Usage of custom datatypes is complicated

<epam> |



XML-RPC Demo

<epam> |



History of Web-services

early 1990s | DCE/RPC
soon | MSRPC
October 1991 | CORBA
993 L COM/OLE
1993 L MSRPC + COM/OLE = DCOM
998 L XML-RPC
Sep 13,1999 | SOAP 1.0

<epam> |



History of Web-services

early 1990s | DCE/RPC

soon | MSRPC

October 1991 | CORBA
993 L COM/OLE
1993 L MSRPC + COM/OLE = DCOM
1998 |8 XML'RPC

Sep 13,1999 | SOAP 1.0
2000 L REST

<epam> |



REST Request/Response Example

Request

POST /stock

Host: www.stocks.com

Authorization: Basic XXXXXXXXXXXXXXXXXXX
Accept: application/json

Content-Length: nnn

Content-Type: application/json

{

“name”: “IBM”,
“price”: “34.5”

}

| CONFIDENTIAL

<epam>

Response

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: nnn

{

“name”: “IBM”,
“price”: “34.5”

}

28




Benefits and drawbacks

Benefits

« Can use any encoding (XML, JSON, etc.)

« Easy and relatively fast implementation

* Doesn’t require contract like WSDL

« Reuses HTTP protocol features instead of inventing new

Drawbacks

* Not a standard - limited support from programming languages
* As it doesn’t have schemas and formal contract might be bad documented

<epam> |




History of Web-services

early 1990s | DCE/RPC
9" b MSRPC
October 1991 L CORBA
3L COM/OLE
3L MSRPC + COM/OLE = DCOM
%% b XML-RPC
Sep 13, 1999 L SOAP 10
2% b REST
May 209 L SOAP 1.1

<epam> |



History of Web-services

early 1990s | DCE/RPC
o b MSRPC

October 1991 L CORBA
3 L COM/OLE
"> b MSRPC + COM/OLE = DCOM
% b XML-RPC

Sep 13, 1999 L SOAP 10
2% b REST

May 209 L SOAP 1.1

June 24, 2003 L SOAP 12

<epam> |



SOAP Request/Response Example

Request

POST /stock HTTP/1.1

Host: www.stocks.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope”
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encodi
ng">

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPrice>
<m:StockName>|BM</m:StockName>
</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

| CONFIDENTIAL

<epam>

Response

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"7?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope

soap:encodingStyle="http://www.w3.0rg/2001/12/soap-e
ncoding™>

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>
</soap:Body>

</soap:Envelope>




Benefits and drawbacks

Benefits

* Robust standard with long history and solid support from nearly all programming languages

« WSDL allows automatic method generation and serves as documentation even if there’s no
documentation

* Allows much more functionality in comparison with XML-RPC

« Supports all basic datatypes “out of box”

 Allows usage of custom data (XSD-defined)

Drawbacks

« XML is too verbose (in comparison with JSON)
 Relatively time-consuming development (requires WSDL, XSD)
 Standard is too universal - most services don’t use all features

<epam> |



Web Services Types

By invocation target type:

* Method call (XML-RPC)

* Message transfer (SOAP)

» Resource manipulation (REST)

Each Web Service relies on at least two protocols:
« Data encoding protocol

Determines how data is represented.
* Transport protocol

Determines how data is transmitted.

<epam> |



