

Выбор оборудования приемного резервуара

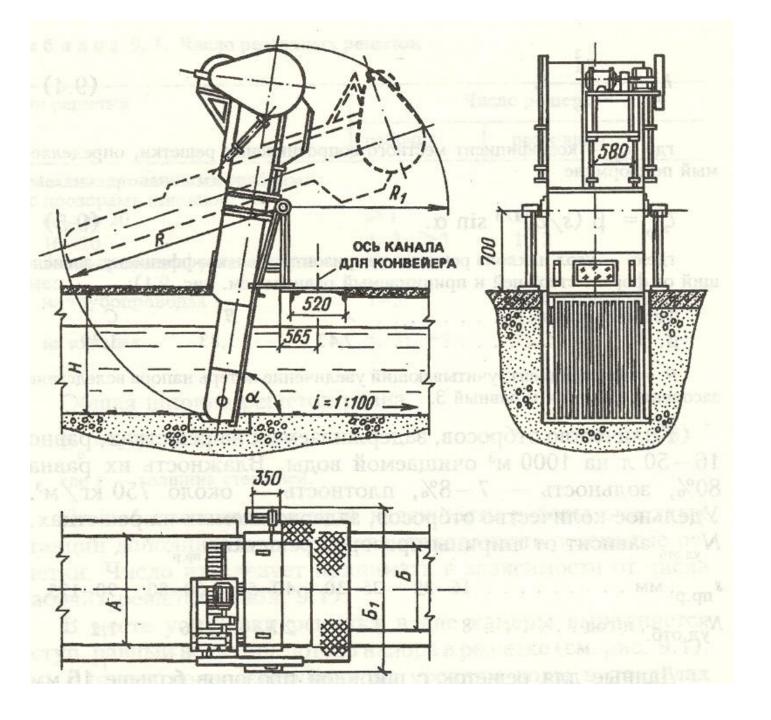
(Для НС систем водоотведения)

Исходные данные 1:

- Суточная подача насосной станции 35 000 м³/сут.
- Максимальный приток сточных вод на насосную станцию Q_{max}=5,6%=1960 м³/ч= 545л/с =0,545 м³/с.
- Число жителей в населенном пункте 85 тыс. человек.
- Подобрать оборудование для приемного резервуара НС системы водоотведения.

1 вариант: решетка с механизированными граблями и дробилка

Решетка:


1. Определяем суммарную площадь живого сечения рабочей части решеток:

$$\Sigma F_p = \frac{Q_{\text{max}}}{V} = \frac{0,545}{0,8} = 0,68 M^2$$

5.14. Скорость движения сточных вод в прозорах решеток при максимальном притоке следует при нимать в прозорах механизированных решеток 0,8—1 м/с, в прозорах решеток-дробилок — 1,2 м/с.

2. Площадь живого сечения одной решетки вычисляем, задавшись количеством рабочих решеток *п* (обычно 1-3):

$$F_p = \frac{\Sigma F_p}{n} = \frac{0.68}{2} = 0.34 M^2$$

Технические характеристики механических решеток

(уч-к Б.В.Карасева, табл.7.3)

Марка решетки	Размеры канала		F _p , M ²	Размеры решетки		Macca,
	В, мм	Н, мм	۲	В ₁ , мм	R, мм	КГ
PMMB-1000	1000	1000	0,3	-	-	1690
МГ9Т	1000	1200	0,38	1425	2050	1320
МГ7Т	800	1400	0,39	1338	2100	1000
МГ11Т	1000	1600	0,57	1520	2425	1500
МГ10Т	1000	2000	0,74	1580	2850	1800
МГ8Т	1400	2000	1,25	1955	2850	1657
МГ12Т	1600	2000	1,5	2175	2850	1870
МГ6Т	2000	2000	1,9	2675	2850	1961
МГ5Т	2000	3000	2,1	2675	3810	2690

Тип решетки	Число решеток			
	рабочих	резервных		
С механизированными граблями и с прозорами шириной, мм: св. 20	1 и более	1		
16-20	До 3	1		
	Свыше 3	2		
С ручной очисткой	1	-		

<u>Дробилка:</u>

1. Определяем объем отбросов, снимаемых с решеток, л/сут:

$$W = \frac{N \cdot q_{o\tau}}{365}$$

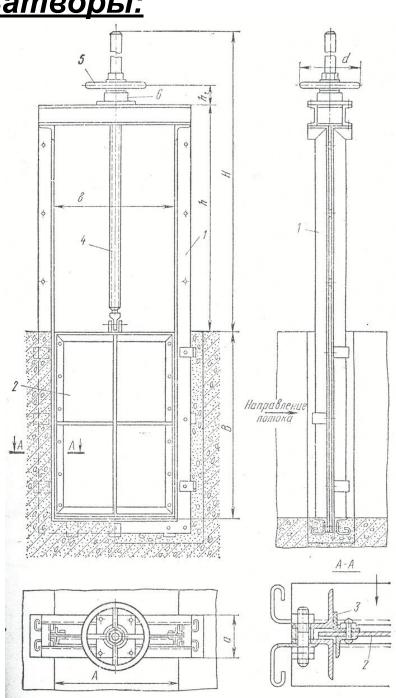
где N - число жителей в населенном пункте, q_{om} — количество отбросов, задерживаемых решетками из бытовых сточных вод, принимаемое в зависимости от принятой ширины прозоров решетки.

5.13. Количество отбросов, задерживаемых решетками из бытовых сточных вод, следует принимать по табл. 23. Средняя плотность отбросов — 750 кг/м³, коэффициент часовой неравномерности поступления - 2.

СНиП 2.04.03-85*, табл.23

Ширина прозоров решеток, мм	Количество отбросов, снимаемых с решеток на 1 чел., л/год		
16-20	8		
25-35	3		
40-50	2,3		
60-80	1,6		
90-125	1,2		

$$W = \frac{N \cdot q_{om}}{365} = \frac{85000 \cdot 8}{365} = 1863\pi/cym$$


2. Вычисляем массу отбросов, снимаемых с решеток, кг/сут:

$$M = \frac{W \cdot \rho}{1000} = \frac{1863 \cdot 750}{1000} = 1397 \kappa \epsilon / cym$$

- 3. По справочным данным подбираем марку дробилки, выписываем ее технические данные и копируем ее установочный чертеж с размерами.
- Для дробления отбросов применяют молотковые дробилки трех типов:
- конструкции Мосводоканалниипроекта Д-3 (производительность 300 600 кг/ч);
- конструкции завода «Водоприбор» (производительность 1000 кг/ч);
- конструкции Гидропроекта (производительность 2000 кг/ч).

- **5.15.** При механизированных решетках следует предусматривать установку дробилок для измельчения отбросов и подачи измельченной массы в сточную воду перед решеткой или установку герметичных контейнеров согласно требованиям п. 6.19.
- При количестве отбросов свыше 1 т/сут кроме рабочей необходимо предусматривать резервную дробилку.

Затворы:

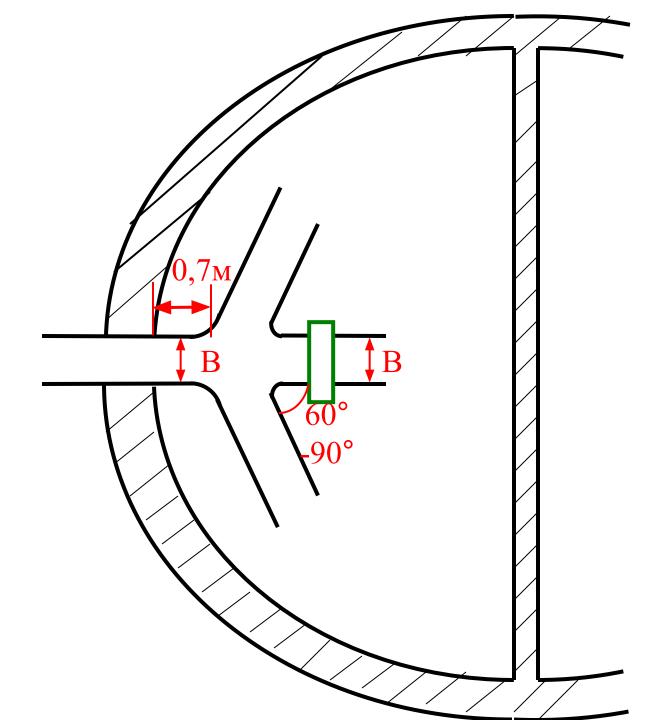
Щитовой затвор прямоугольный сварной с ручным приводом для открытых каналов

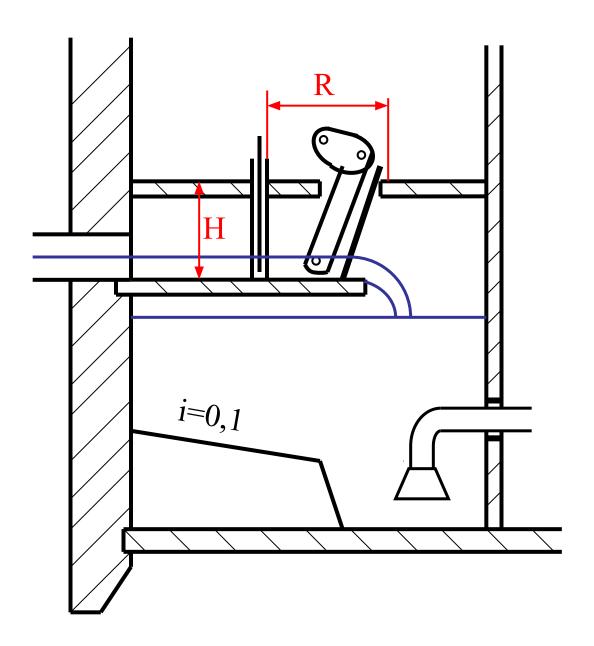
(Спр-к Москвитина, с.154-159)

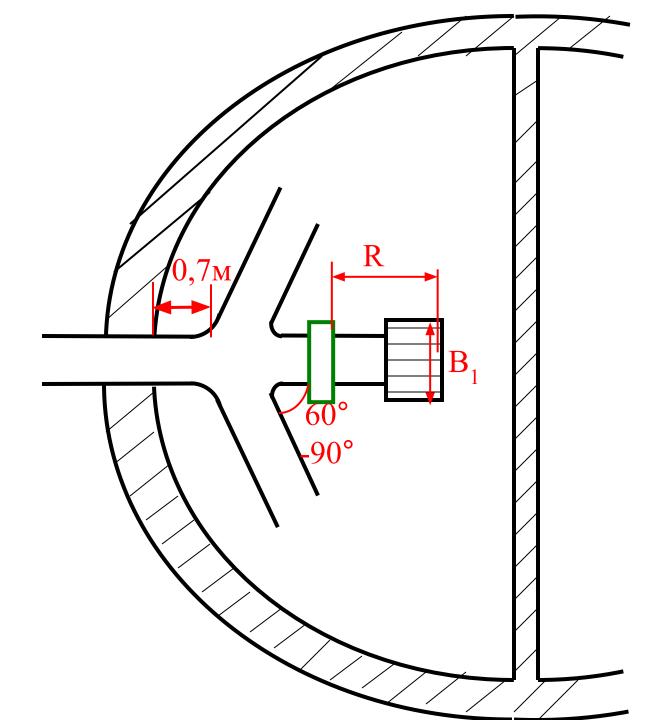
1 –рама

2-щит

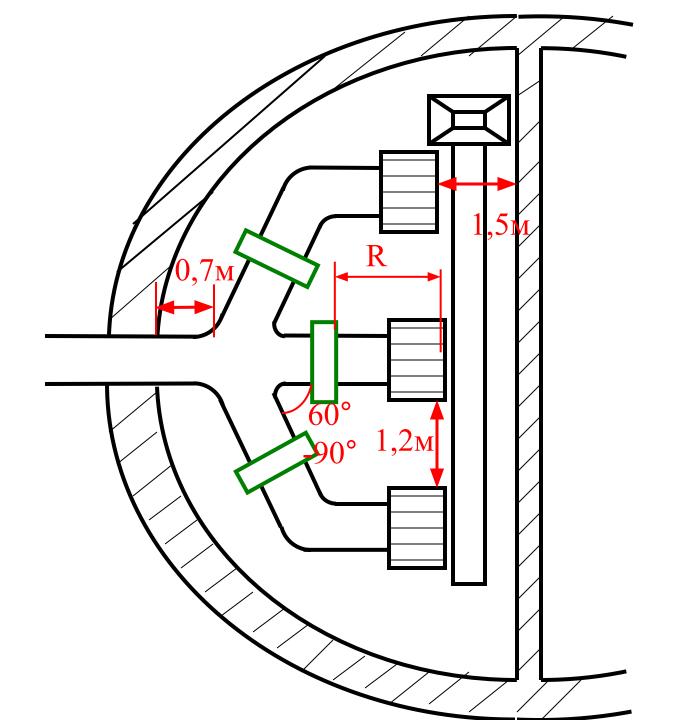
3 –резиновое уплотнение

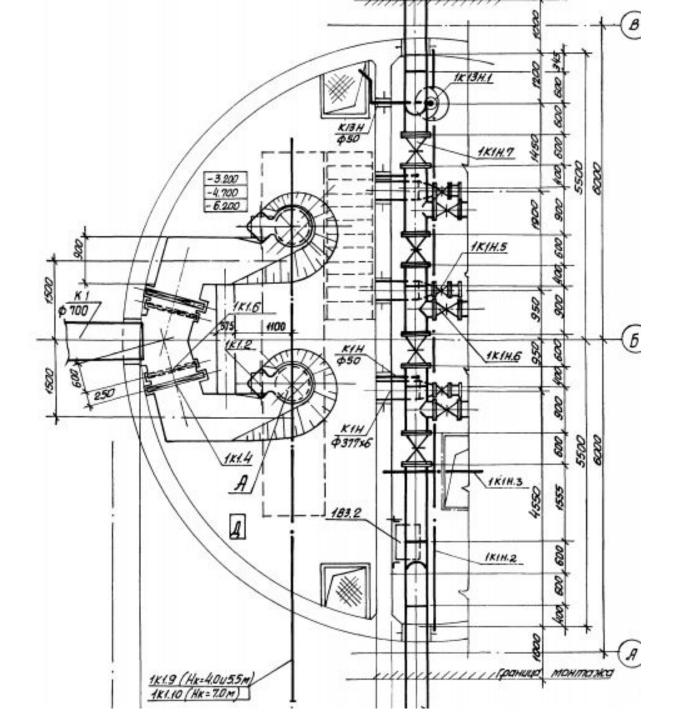

4-винт

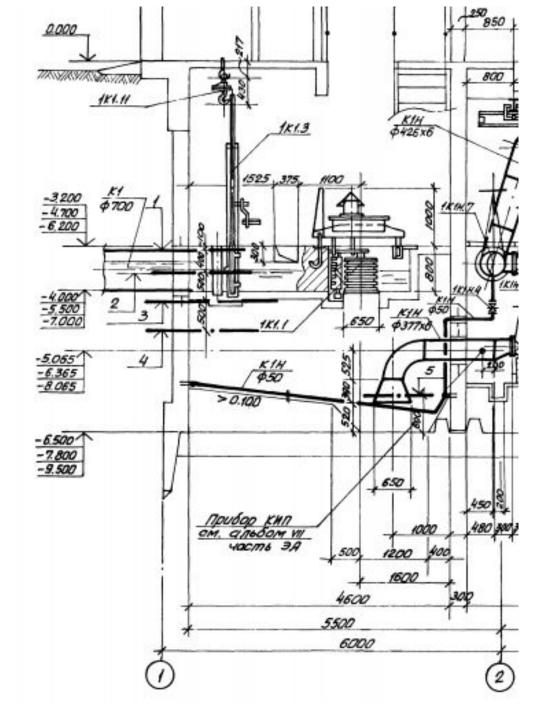

5-маховик


6-подъемная гайка

Компоновка оборудования в приемном резервуаре






- **5.16.** Вокруг решеток должен быть обеспечен проход шириной, м, не менее:
- □ с механизированными граблями 1,2 (перед фронтом — 1,5);
- □ с ручной очисткой 0,7;
- □ решеток-дробилок, устанавливаемых на каналах, —1.

2 вариант: решетка - дробилка

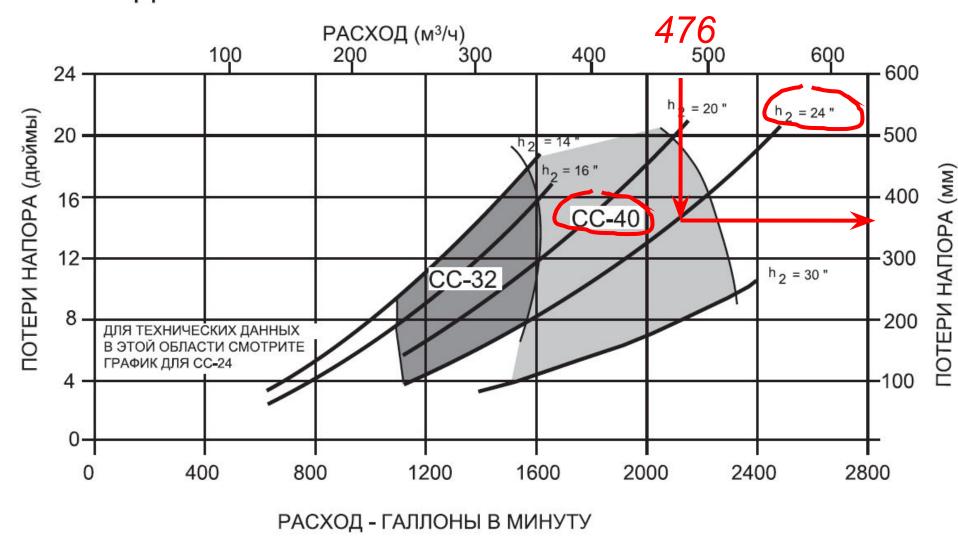
Q _{сут} , м³/сут	Q _{max} ,	Марка Число Р-Д			ļ
M ³ /CyT	л/с		рабочих	резерв.	общее
4 200	92		1	1	2
7 000	147	РД-400	1	1	2
10 000	194		2	1	3
17 000	315		3	1	4
25 000	445		1	1	2
32 000	556		1	1	2
50 000	720	РД-600	2	1	3
64 000	903		2	1	3
80 000	1 100		3	1	4

Исходные данные 2:

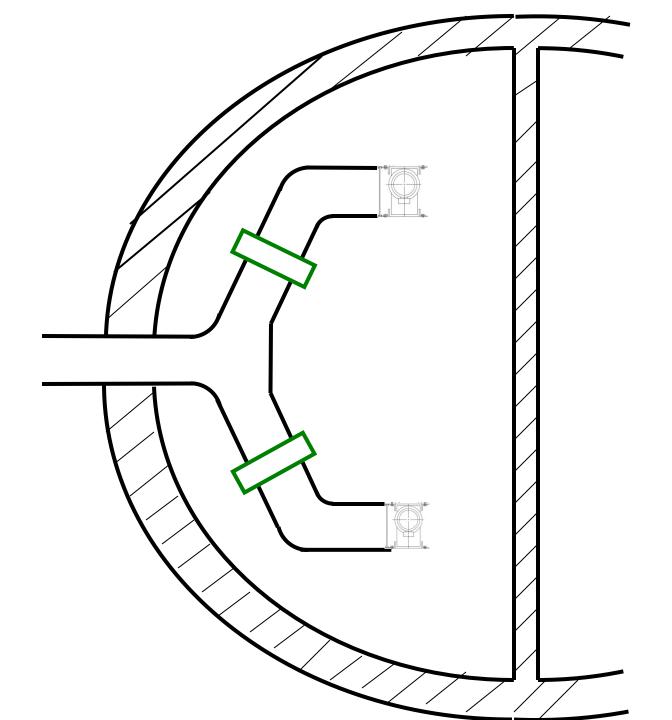
- Суточная подача насосной станции 8 500 м³/сут.
- Максимальный приток сточных вод на насосную станцию Q_{max}=5,6%=476 м³/ч= 132л/с =0,132 м³/с.
- Число жителей в населенном пункте 30 тыс. человек.
- Подобрать оборудование для приемного резервуара НС системы водоотведения.

Минимальная ширина канала 318 мм (по каталогу).

Площадь живого сечения канала:


 $\omega = Q/V = 0.132 \text{ m}^3/\text{c} / 0.7 \text{ m/c} = 0.1886 \text{ m}^2$

Глубина воды в канале h = ω/b = 0,1886


 $M^2 / 0.318 M = 0.6 M = 24$ "

Модели СС-32 и СС-40

24"=0.6 м Глубина перед измельчителем 0,6 +0,36 = 0,96 м

