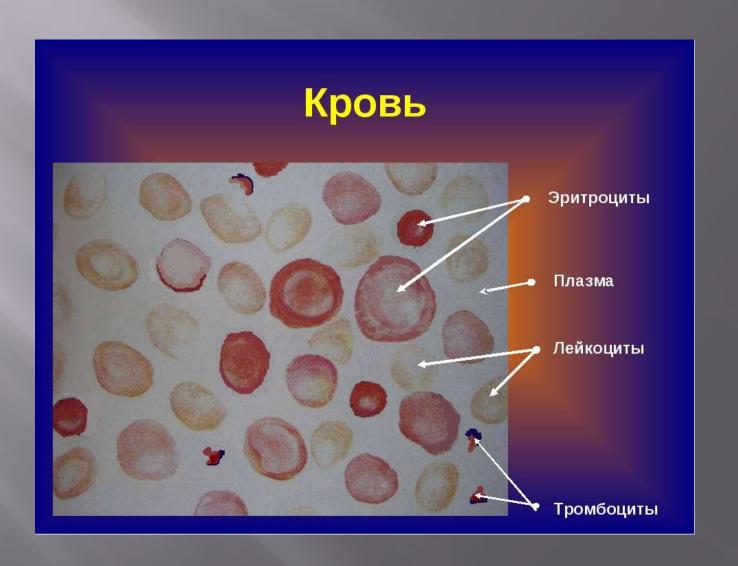
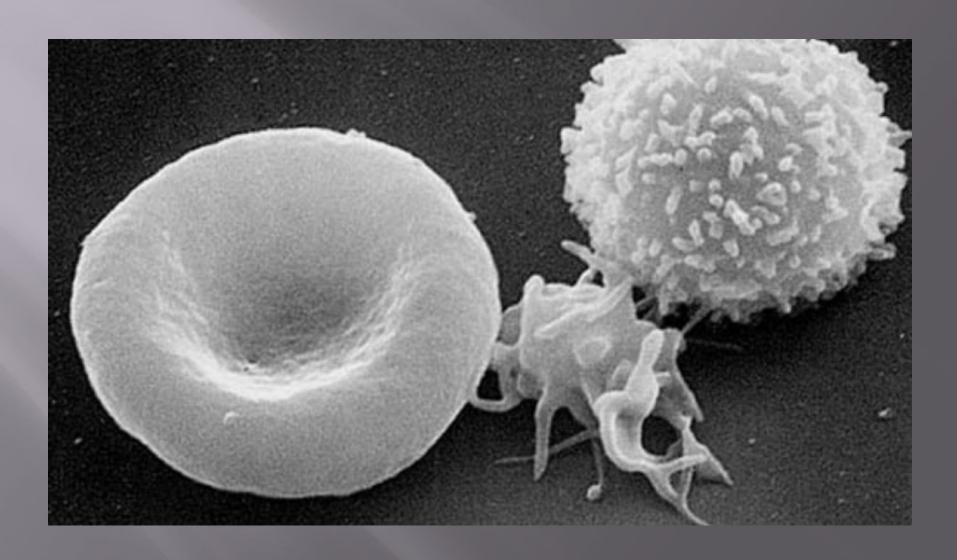

Кровь: состав и функции.



Состав крови


- Кровь состоит
- · 1. плазма (55 60%)
- 2. форменные элементы (40-45%):
 - эритроциты
 - лейкоциты
 - тромбоциты

Мазок крови

Форменные элементы крови

Объем крови

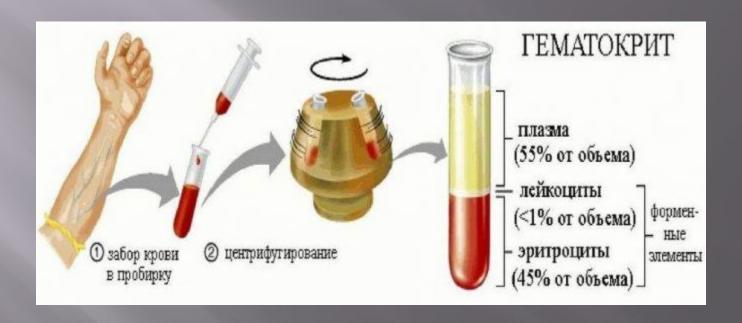
- Общее количество крови 6-8% от массы тела, т.е. около 5-6 л
- 3,5-4 л − объем циркулирующей крови (ОЦК)
- 1,5-2 л депонировано в сосудах органов брюшной полости, подкожной клетчатки и др.

Объём крови

Количество крови зависит от возраста и массы тела человека.

Гематокрит

Гематокрит — это часть объема крови, приходящие на форменные элементы крови. Выражается в объемных процентах


Гематокрит зависит:

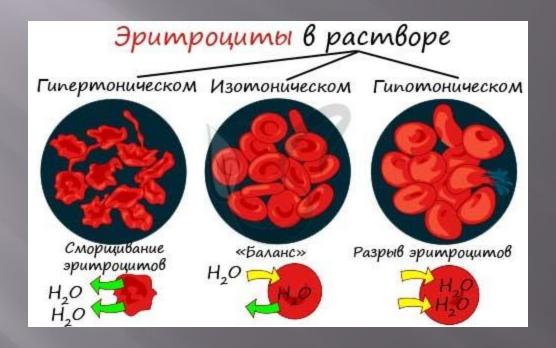
- От возраста (у новорожденных: 40-60%; у годовалого: 30-40%)
- От места проживания(на высокогорных участках выше, чем обычный показатель)

У мужчин: 44 – 48%

У женщин: 36 – 41%

- От пола
- От количества депонированной крови

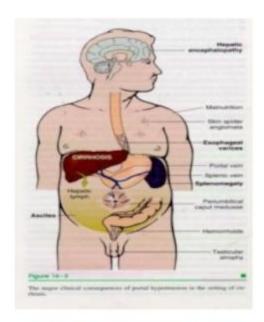
ФИЗИЧЕСКИЕ СВОЙСТВА КРОВИ


- 1. количество 7% от массы тела (в среднем 5 л)
- 2. плазма составляет 55%, форменные элементы 45%
- 3. плотность (удельный вес) крови составляет 1,050-1,064, плазмы 1,024-1,030 г/см³.
- 4. осмотическое давление равно 7,6 атм, в том числе 0,02-0,04 атм. приходится на долю белков (т.е. онкотическое давление)
- 5. pH крови = 7,36 (или $7,4 \pm 0,04$)
- 6. вязкость в 4-5 раз больше вязкости воды

- pH жесткая гомеостатическая величина
- Сдвиг рН крови даже на 0,1 относительно нормы вызывает нарушение функций СС, дыхательной систем;
- на 0,3 коматозное состояние;
- на 0,4 состояния, не совместимые с жизнью.

- В норме рН крови (7,38-7,44) слабоосновная реакция
- pH зависит от образования в процессе обмена веществ «кислых» продуктов метаболизма
 - ↓ рН < 7,35 ацидоз (ацидемия),
 - ↑рН > 7.45 алкалоз (алкалемия)
 - pH 7, 35 7,20 требует экстренного выяснения причин, вызвавших ацидоз (нарушения гемодинамики, дыхания, метаболизма) и их коррекции,
 - pH ≤7,20 немедленное (!) введение экзогенного натрия бикарбоната,
 - pH = 6,95 потеря сознания, вплоть до летального исхода
 - pH 7,7 тяжелейшие судороги (тетания), что также может привести к смерти.

Осмотическое давление

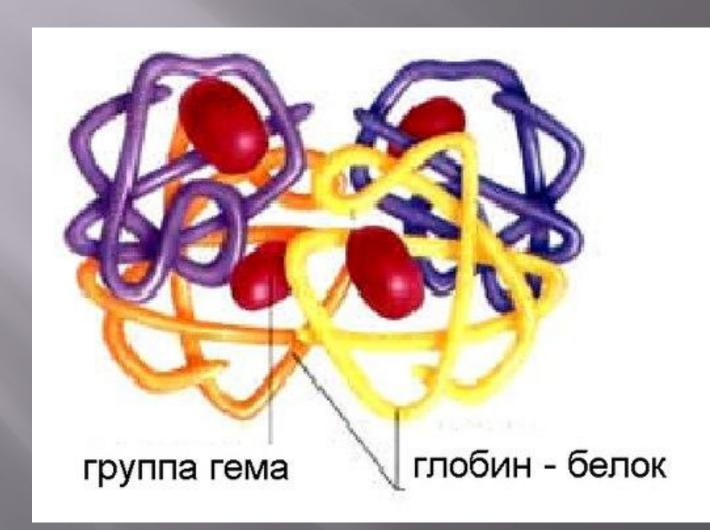

- Односторонняя диффузия молекул растворителя через полупроницаемую мембрану в сторону более концентрированного раствора называется осмосом.
- Сила, заставляющая растворитель переходить через полупроницаемую мембрану в раствор называется осмотическим давлением.

Онкотическое давление крови

- Осмотическое давление, обусловленное белками называют онкотическим давлением.
- Сила осмотического давления 7,6 атмосфер
- Сила онкотического давления − 0,03-0,04 атмосфер
- Основная функция онкотического давления удержание воды в кровеносном русле, что влияет на образование межклеточной жидкости, лимфы, мочи, всасывании воды в кишечнике

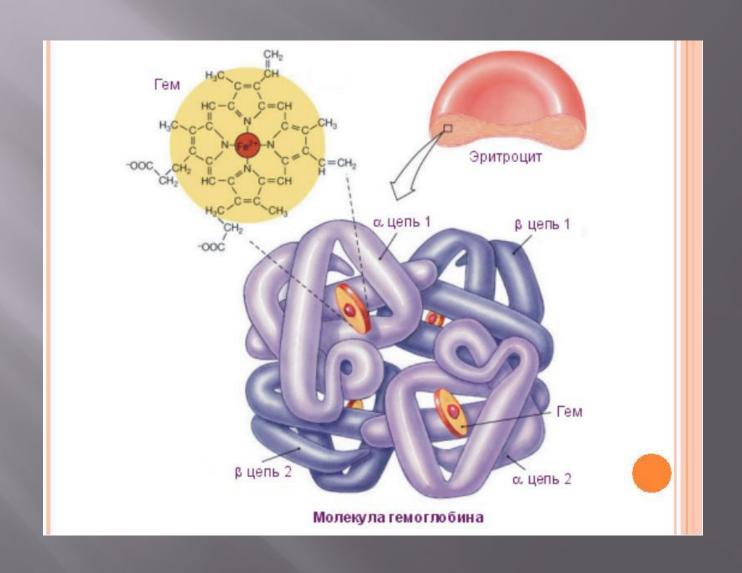
ОНКОТИЧЕСКИЙ ФАКТОР

понижение онкотического давления крови в результате гипопротеинемии (гипоальбуминемии)



играет роль в патогенезе голодных, кахектических, печеночных отеков, при нефротическом синдроме

Эритроциты

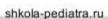


Гемоглобин

Формула гемоглобина

Гемоглобин

Цветной показатель крови

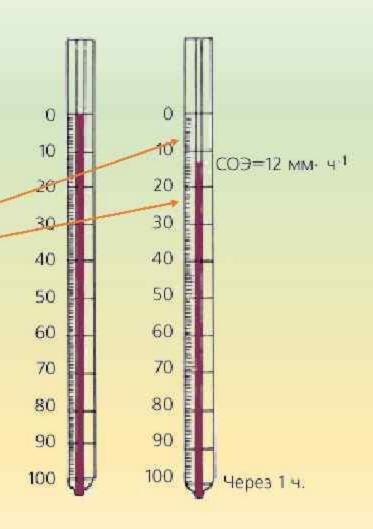

Цветной показатель 0.85 – 1.05

Нормальное содержание гемоглобина в эритроците – 31-33 пг

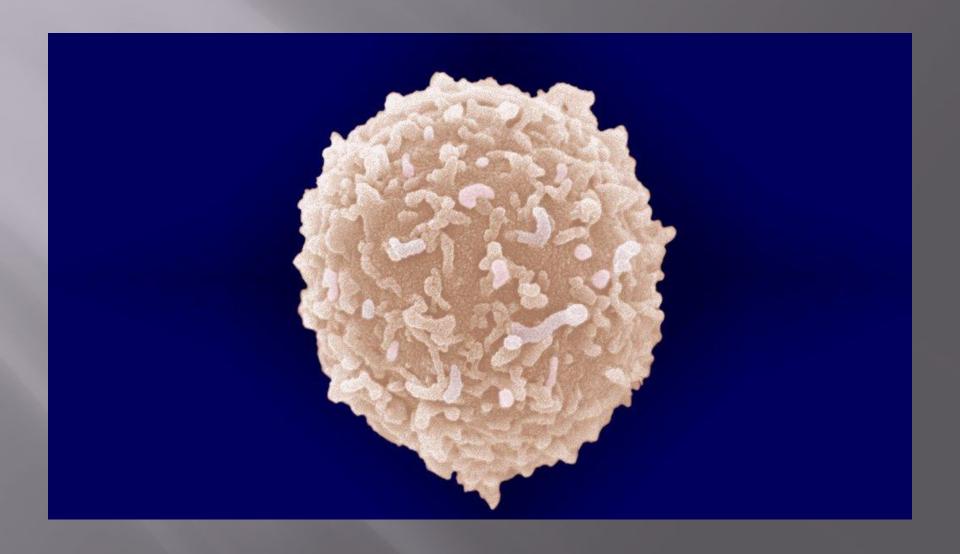
- 0.85 1.05 нормохромия
- Меньше 0.85 гипохромия
- Больше 1.05 гиперхромия

Внешние признаки анемии:

- Слизистые оболочки и кожа бледные,
- Кожа сухая и шероховатая,
- Ломкость ногтей и волос, "цветущие ногти",
- Частые возникновения стоматитов, трещинок в уголках губ,
- Нарушение пищеварительного процесса, приводящее к возникновению неустойчивого стула,
- Ребёнок быстро утомляется, становится раздражительным и плаксивым,
- Развивается кариес, изменяется вкус, снижается аппетит,
- Наблюдается сердцебиение и одышка.

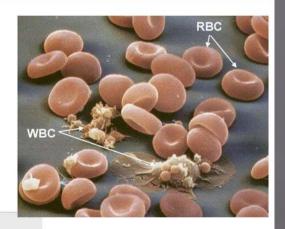


Скорость оседания эритроцитов (СОЭ): неспецифический показатель воспаления


показатель скорости разделения крови в пробирке с добавленным антикоагулянтом на 2 слоя: верхний (прозрачная плазма)

и нижний (осевшие эритроциты).

Скорость оседания эритроцитов оценивается по высоте образовавшегося слоя плазмы (в мм) за 1 час. Удельная масса эритроцитов выше, чем удельная масса плазмы, поэтому в пробирке при наличии антикоагулянта (цитрата натрия) под действием силы тяжести эритроциты оседают на дно.


Лейкоцит

Лейкоциты

Общее количество: 4 - 9 * 10° / л

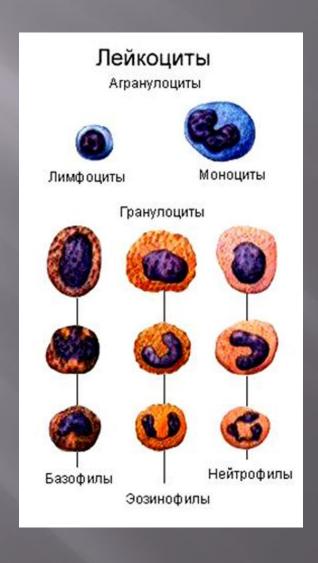
Время жизни: 4-5 дней

ГРАНУЛОЦИТЫ

базофилы

нейтрофилы

АГРАНУЛОЦИТЫ


Классификация гранулоцитов по степени зрелости

- 1. миелоциты
- 2. метамиелоциты
- 3. палочкоядерные гранулоциты
- 4. сегментоядерные гранулоциты
- Миелоциты+метамиелоциты = юные гранулоциты
- Юных гранулоцитов в крови у здорового человека нет

Классификация гранулоцитов по восприятию красителей

- 1. нейтрофилы
- 2. базофилы
- 3. эозинофилы

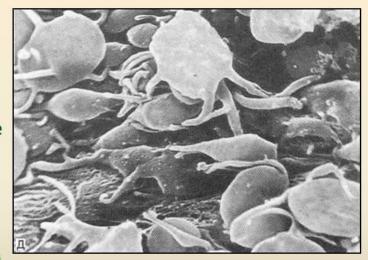
Разновидности лейкоцитов

Лейкоцитарная формула

Лейкоцитарная формула (лейкограмма) – это количественные соотношения (%) всех указанных видов лейкоцитов периферической крови.

Вправо	

Юные нейтро- филы	Палочко- ядерные нейтро- филы	Сегменто- ядерные нейтро- филы	Эо- зи- но- фи- лы	Ба- 30- фи- лы	Лим- фо- ци- ты	Мо- но- ци- ты
0	1- 6	47- 72	0,5 - 5	0 - 1	19 - 37	3 -11
	(2-4)	(47-67)			(25-35)	(2-6)



Тромбоциты

Тромбоциты, или

кровяные пластинки – плоские клетки неправильной округлой формы диаметром 2 – 5 мкм.

Тромбоциты человека не имеют ядер - это фрагменты клеток, которые меньше половины эритроцита. Количество тромбоцитов в крови человека составляет 180 — 320х10¹/л, или 180 000 — 320 000 в 1 мкл.

Тромбоциты

Количество – 180 – 320 тыс. в 1 мкл Строение: безъядерные пластинки диаметром 2-5 мкм

Свойства: 1) адгезия — способность тромбоцитов прилипать к чужеродной поверхности 2) агрегация — способность тромбоцитов склеиваться друг с другом 3) амебовидная подвижность 4) легкая разрушаемость Функции: 1) гемостатическая - участие в свертывании крови;

2) ангиотрофическая - улучшают трофику (питание) клеток капилляров; 3) регулируют тонус сосудистой стенки (за счет выработки серотонина).

Плазма крови

- Плазма крови это межклеточное вещество, прозрачная, слегка желтоватая жидкость.
- Сыворотка это плазма без фибриногена.

- · ГРУППЫ КРОВИ по системе AB0
- На мембране эритроцитов могут быть белки, называемые агглютиногены.

По системе АВО различают 2 вида агглютиногенов: А и В

• В плазме крови могут быть антитела к этим белкам, называются агглютинины: α и β.

Четыре допустимых комбинации определяют группу крови:

- 。 0 (первая) 0 а и β
- o A (вторая) A β
- 。 В (третья) В а
- 。 АВ (четвёртая) АВ 0

Карл Ландштейнер, австрийский ученый, нобелевский лауреат

Определение группы крови

- Группа крови обязательно определяется перед переливанием крови.
- Для определения группы крови используют стандартные гемагглютинирующие сыворотки
- 2. Для определения группы крови используют цоликлоны

Группы крови

Результаты определения группы крови

Наличие изогеманта	Группа крови			
0(T)	A(II)	B(III)	AB(IV)	
\bigcirc		0		θαβ(1)
	0			A _p (II)
		0		$B_{\alpha}(III)$
			0	AB _s (IV)

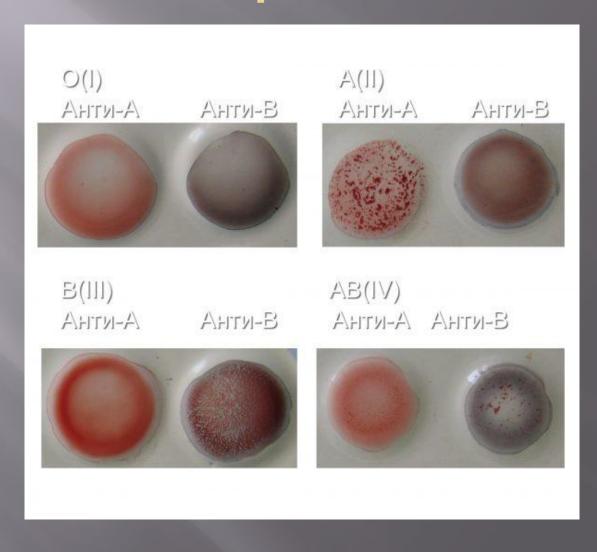
ОПРЕДЕЛЕНИЕ ГРУППЫ КРОВИ

В данном методе используют – цоликлоны.

Цоликлоны — это синтетические заменители сывороток. Они содержат искусственные заменители агглютининов ά и β. Их называют эритротестами «Цоликлон анти-А» (розового цвета) и «анти-В» (синего).

Цоликлоны – это антитела, которые получают посредством технологий генной инженерии. Обычно для получения цоликлонов берутся лабораторные мыши - животным вводится специальный препарат, после чего производят забор жидкости из брюшной полости – именно она и содержит необходимые для проведения анализа вещества. С научной точки зрения, цилоклоны можно отнести к иммуноглобулинам М, которые способны реагировать с агглютиногенами – специфическими клетками, присутствующими на поверхности красных кровяных телец.

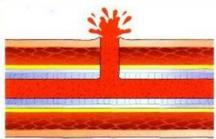
Определение группы крови


Определение группы крови с использованием Цоликлонов

Асстиотинация

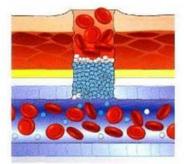
-	BIMBELEBERGE		
	Анти-А	Анти-В	
O(I) первая	-	7/20	
A(II) вторая	×	(0.0)	
В(ІІІ) третья		x	
АВ(IV) четвертая	X	X	

Результаты определения группы крови



Резус-фактор

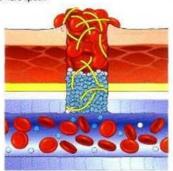
- Резус-фактор
- Резус крови это антиген (белок), который находится на поверхности эритроцитов.
- · Он обнаружен в 1940 году Карлом Ландштейнером и А. Вейнером.
- · Около 85 % европейцев (99 % индийцев и азиатов) имеют резус и соответственно являются резус-положительными.
- Остальные же 15 % (7 % у африканцев), у которых его нет, резус-отрицательный.
- Резус крови играет важную роль в формировании так называемой гемолитической желтухи новорожденных, вызываемой вследствие резус-конфликта иммунизованной матери и эритроцитов плода.


Свертывание крови

Стадии свертывания крови

Повреждение

Когда кровеносный сосуд поврежден, кровь выходит из системы кровообращения, и ее объем уменьшается. Чрезмерную потерю крови предотвращает гемостаз


Стадия 2

Формируются закупорки из тромбоцитов. Тромбоциты (белые) склеиваются друг с другом и временно закупоривают отверстие в стенке сосуда

Стадия 1

Первая стадия гемостаза включает сужение кровеносного сосуда; поврежденный кровеносный сосуд сужается, что уменьшает объем проходящей через него крови.

Стадия 3

Образуется сгусток крови; кровяные клетки улавливаются фибриновой сетью (желтые нити), закрывающей рану до окончательной закупорки

Стадии свертывания

