

Кровь (haema, sanguis) — это жидкая ткань (разновидность соединительной), состоящая из плазмы и взвешенных в ней кровяных клеток.

Кровь заключена в систему сосудов и находится в состоянии непрерывного движения.

Кровь, лимфа, межтканевая жидкость являются 3 внутренними средами организма, которые омывают все клетки, доставляя им необходимые для жизнедеятельности вещества, и уносят конечные продукты обмена.

Внутренняя среда организма постоянна по своему составу и физико-химическим свойствам (гомеостаз).

Гомеостаз регулируется нервной и эндокринной системами.

Внутренняя среда организма

Кровь

- Находится в кровеносных сосудах;
- Поддерживает постоянство состава тканевой жидкости и др.
- Состонт из плазмы и клеток крови

Тканевая жидкость

- Находится в тканях между клетками;
- Образуется из плазмы крови;
- Из тк.ж. клетки получают пит. вещества и кислород, выделяя в неё продукты обмена веществ

Лимфа

- Находится в лимфатических сосудах;
- Это тканевая жидкость в лимфатических сосудах (нет клеток крови, меньше белков, много лимфоцитов);
- Защита организма от чужеродных веществ.

Функции крови:

- 1) транспортная:
- а) дыхательная перенос кислорода от легких к тканям и углекислого газа от тканей к легким;
- б) питательная доставка пластических (аминокислот, нуклеотидов, витаминов, минеральных веществ) и энергетических (глюкоза, жиры) ресурсов к клеткам и тканям; в) экскреторная перемещение конечных продуктов обмена к органам выделения (почкам, потовым железам, коже);
- 2) терморегуляторная: за счет высокой теплоемкости крови осуществляется перенос тепла от места его образования к легким и коже, где происходит теплоотдача;
- 3) **поддержание тканевого гомеостазиса и регенерации тканей**: поддержание водносолевого баланса, кислотно-щелочного равновесия, вязкости и т.д.;
- 4) регуляторная обеспечивается переносом гормонов и факторов специфической (биологически активные вещества) и неспецифической (метаболиты, ионы, витамины) регуляции;
- 5) защитная обеспечение иммунных реакций за счет иммунокомпетентных клеток (лимфоцитов) и антител, фагоцитоза, наличия ферментов неспецифической защиты (лизоцим), системы комплемента, системы свертывания.

• Количество

Кровь составляет 6-8% массы тела. Новорожденные имеют до 15%. В среднем у человека 4,5 - 5 л. Кровь, циркулирующая в сосудах - *периферическая*, часть крови содержится в депо (печень, селезенка, кожа) - *депонированная*.

• **Удельный вес** (плотность) крови - 1,050 - 1,060.

Он зависит от количества эритроцитов, гемоглобина и белков в плазме крови. Он увеличивается при сгущении крови (обезвоживание, физические нагрузки). Снижение удельного веса крови наблюдается при притоке жидкости из тканей после кровопотери. У женщин несколько ниже удельный вес крови, т. к. у них меньше количество эритроцитов.

- •Вязкость крови 3— 5, превышает вязкость воды в 3 5 раз.
- Зависит от количества эритроцитов и белков плазмы (в основном фибриногена) в крови.
- От вязкости крови зависят реологические свойства крови скорость кровотока и периферическое сопротивление крови в сосудах.

Вязкость увеличивается при сгущении крови, обезвоживании, после физических нагрузок, некоторых отравлениях, в венозной крови, при введении препаратов - коагулянтов (препаратов, усиливающих свертывание крови).

Уменьшается вязкость при анемиях, при притоке жидкости из тканей после кровопотери, при гемофилии, при повышении температуры, в артериальной крови, при введении *гепарина* и других противосвертывающих средств.

Реакция среды (рН) - в норме **7,36** - **7,42**.

Состояние, при котором происходит накопление в крови и тканях кислых эквивалентов, называется ацидоз (закисление), рН крови при этом уменьшается (меньше 7,36).

Ацидоз может быть:

- •газовым при накоплении СО₂ в крови
- •метаболическим (накопление кислых метаболитов, например при диабетической коме накопление ацетоуксусной и гамма-аминомаслной кислот).
- Ацидоз приводит к торможению ЦНС, коме и смерти.

Накопление щелочных эквивалентов называется алкалоз (защелачивание) - увеличение рН больше 7,42.

Алкалоз также может быть:

- •газовым, при гипервентиляции легких (если выведено слишком большое количество СО₃),
- •метаболическим при накоплении щелочных эквивалентов и чрезмерном выведении кислых (неукротимая рвота, поносы, отравления и др.)
- Алкалоз приводит к перевозбуждению ЦНС, судорогам мышц и смерти.

- Осмотическое давление крови =7,6-8,1 атм.
- Создается в основном солями натрия и др. минеральными солями, растворенными в крови.
- Благодаря осмотическому давлению вода распределяется равномерно между клетками и тканями.

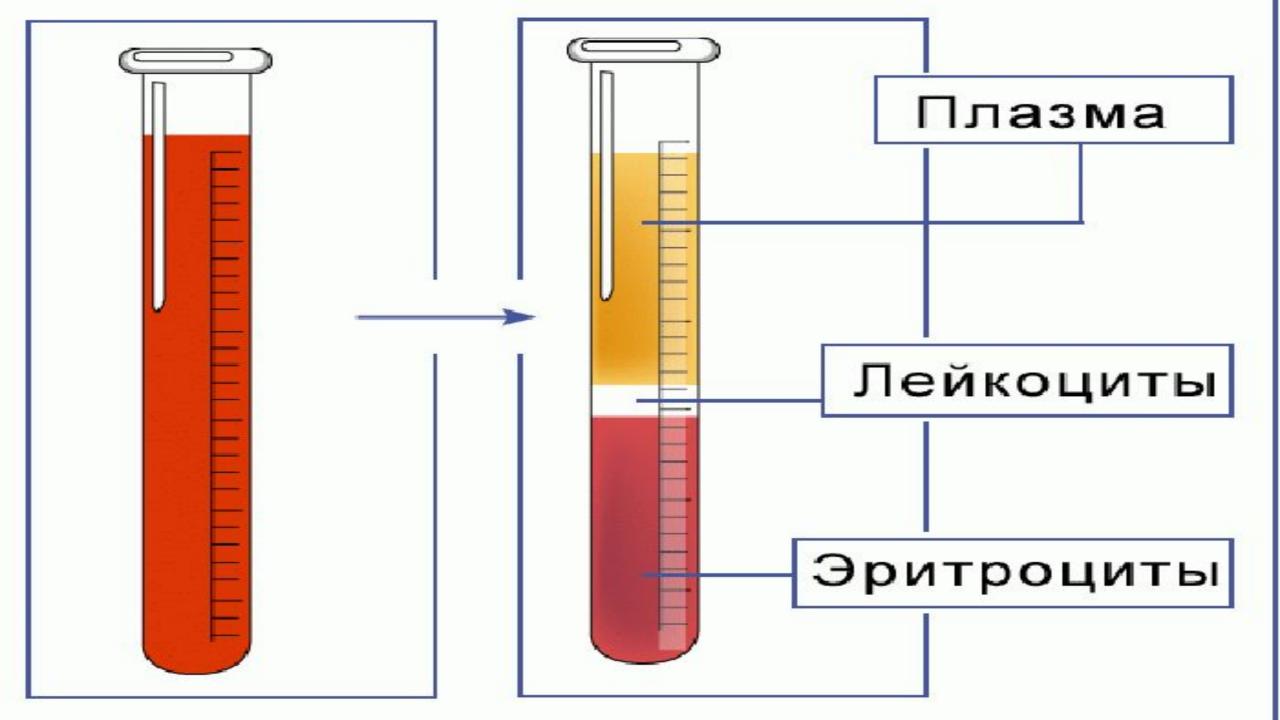
Изотоническими растворами называют растворы, осмотическое давление которых равно осмотическому давлению крови. **В изотонических растворах эритроциты не изменяются.** Изотоническими растворами являются: физиологический раствор 0,86% NaCl, раствор Рингера.

В гипотоническом растворе (осмотическое давление которого ниже, чем в крови) вода из раствора идет в эритроциты, при этом они набухают и разрушаются - осмотический гемолиз.

Растворы с более высоким осмотическим давлением называются **гипертоническими,** эритроциты в них теряют H₂O и сморщиваются.

Осмотические свойства крови

Гипотонический

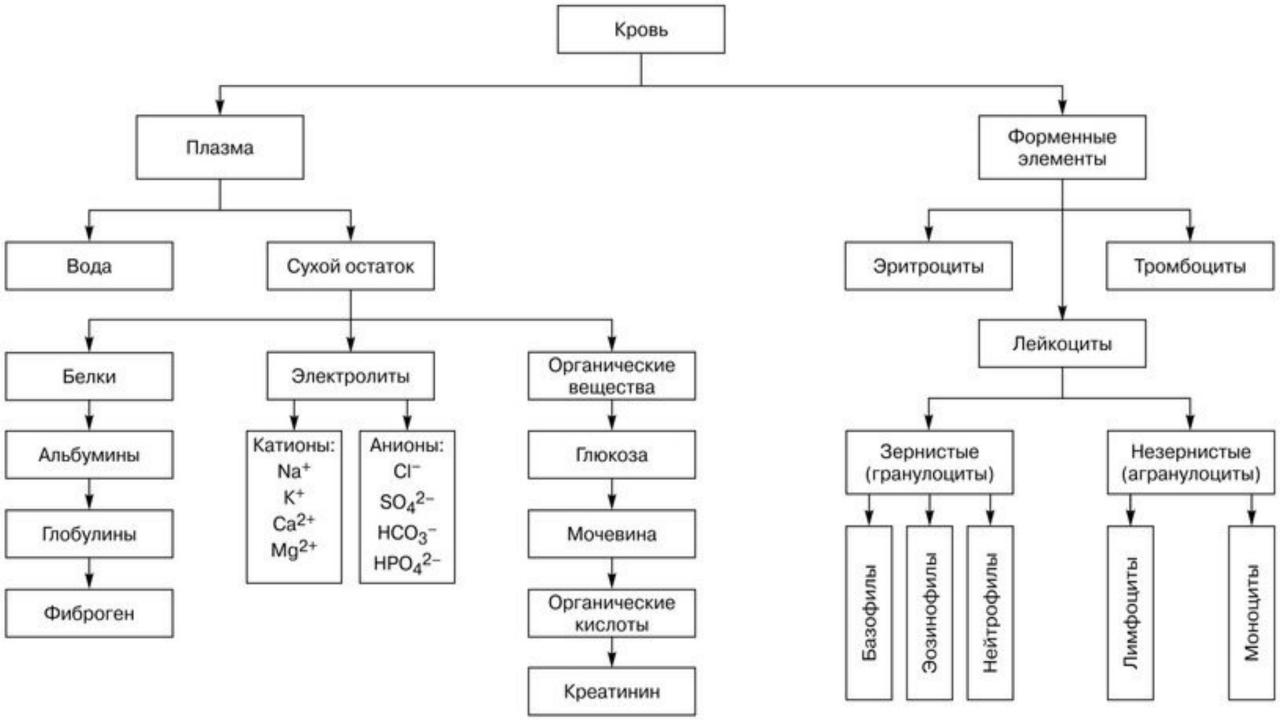

Гемолиз — разрыв оболочки эритроцита и выход гемоглобина в плазму крови
Осмотическое давление крови — 7,5 атм.

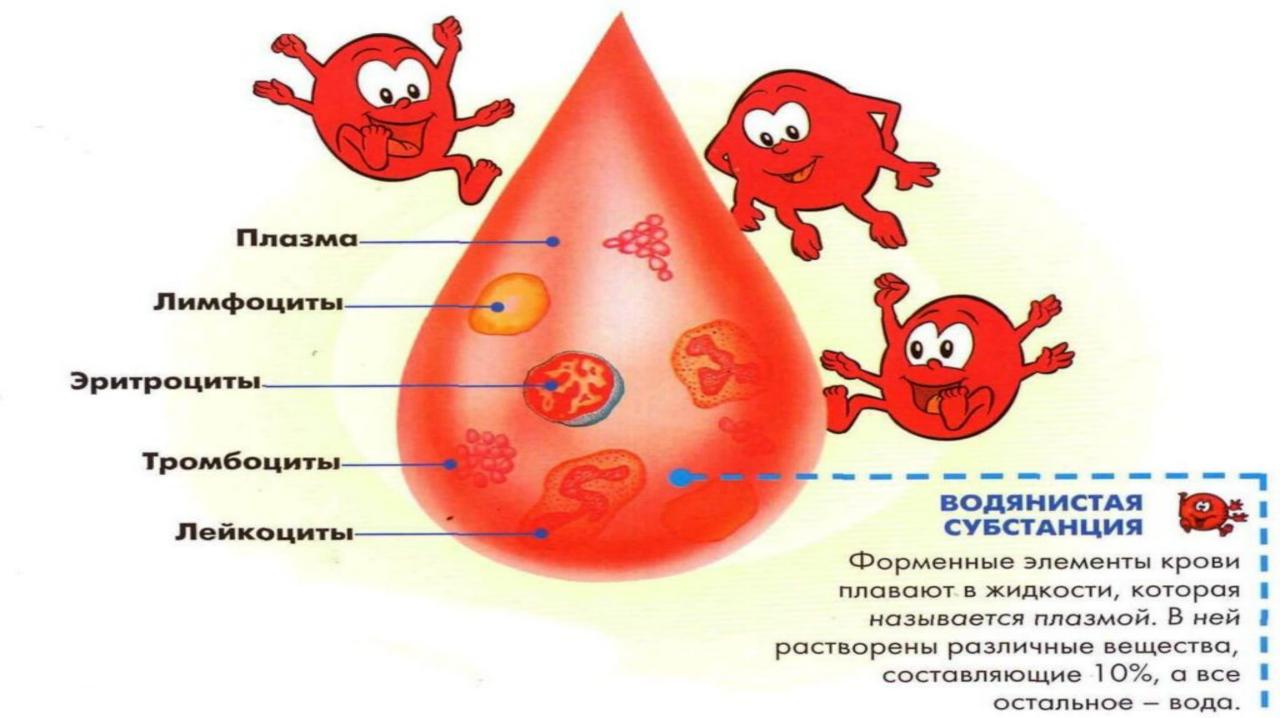
- Онкотическое давление крови обусловлено белками плазмы крови (в основном альбуминами).
- В норме составляет **25-30 мм рт. ст.** (в среднем 28) (0,03 0,04 атм.). Онкотическое давление это осмотическое давление белков плазмы крови. Является частью осмотического давления (составляет 0,05 % от осмотического).
- Благодаря ему вода удерживается в кровеносных сосудах (сосудистом русле).
- При уменьшении количества белков в плазме крови гипоальбуминемии (при нарушении функции печени, голоде) онкотическое давление снижается, вода выходит из крови через стенку сосудов в ткани, при этом возникают онкотические отеки («голодные» отеки).

СОЭ - скорость оседания эритроцитов, выражается в мм/час.

У **мужчин** СОЭ в норме – **0-10 мм/час, у женщин** - **2-15 мм/час** (у беременных до 30-45 мм/час).

СОЭ повышается при воспалительных, гнойных, инфекционных и злокачественных заболеваниях, в норме повышена у беременных.

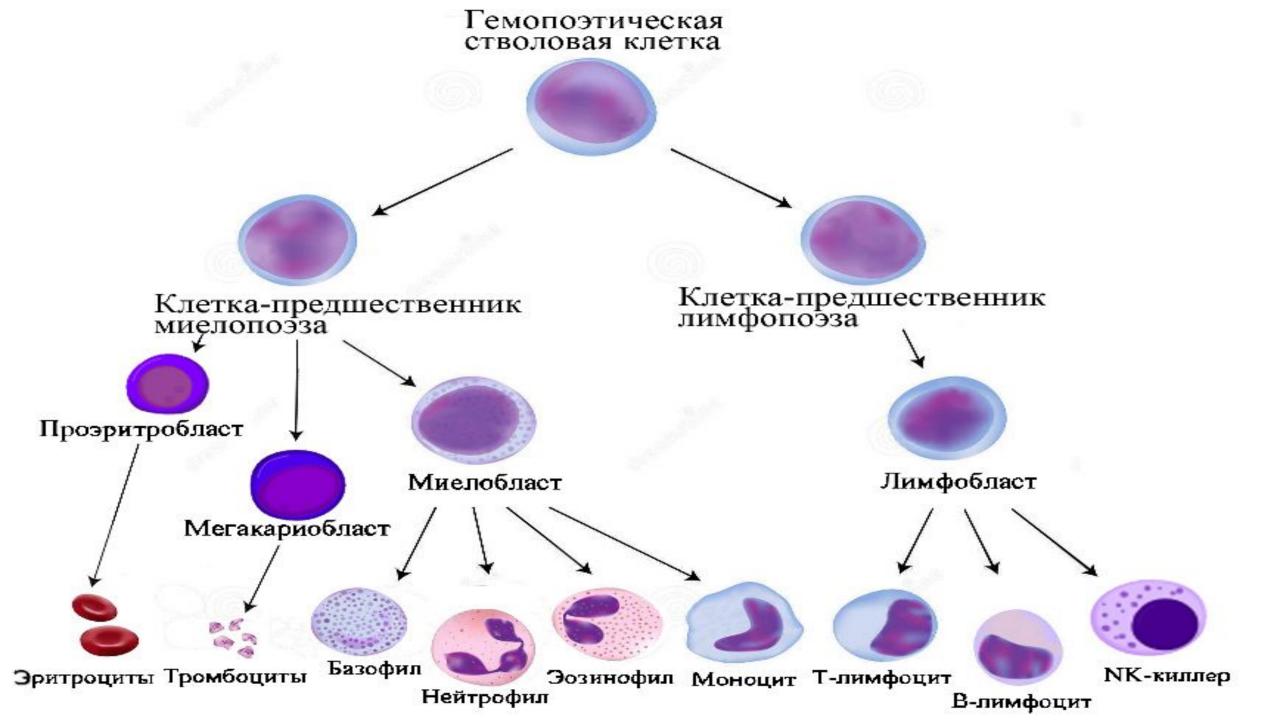

Кровь состоит из **плазмы** (прозрачной жидкости бледножелтого цвета) и взвешенных в ней клеточных элементов или по-другому их называют **форменными элементами**.


Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты).

Плазма это 10 % водный раствор органических и минеральных веществ.

Из них 7% - белки, 0,9% - неорганические соли, 2,0% - небелковые органические соединения.





Все форменные элементы крови образуются из *стволовых клеток красного костного мозга*, находящегося в губчатом веществе костей (его масса у взрослого человека — 1,5 кг). Форменные элементы крови также развиваются и в других органах: селезёнке, лимфатических узлах, миндалинах и др.

Несмотря на то что все клетки крови являются потомками единой кроветворной клетки — фибробластов, они выполняют различные специфические функции, в то же время общность происхождения наделила их и общими свойствами. Так, все клетки крови, независимо от их специфики, участвуют в транспорте различных веществ, выполняют защитные и регуляторные функции.

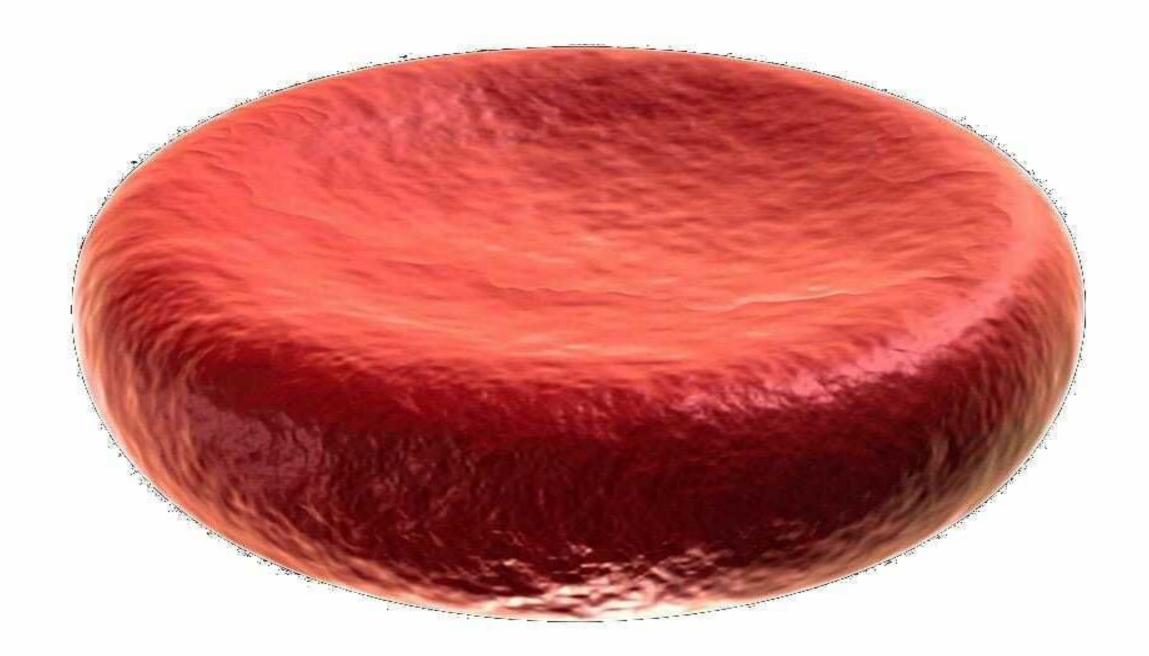
Форменные элементы крови

Название клетки	Форма	Строение	Место образовани я	Функции
Эритроциты	Двояковогн утый диск	Нет ядра; содержит гемоглобин	Красный костный мозг, селезёнка	Переносит О ₂ и СО ₂
Лейкоциты	Округлая	Бесцветная клетка; содержит ядро	Селезёнка, лимфатическ ие узлы, костный мозг	Защитная
Тромбоциты	Непра- вильная	Фрагменты крупных клеток костного мозга, без ядра	Красный костный мозг	Свёртывание крови

Эритроциты

Образование эритроцитов происходит в красном костном мозге. Из стволовых гемопоэтических клеток формируется мегалобласт, из которого в свою очередь образуется эритробласт (ядросодержащая клетка). В ходе созревания предшественники эритроцита утрачивают ядро и образуется ретикулоцит – непосредственный предшественник красных кровяных клеток.

Ретикулоцит попадает в кровеносное русло и трансформируется в эритроцит. На его трансформацию уходит около 2 - 3 часов. Повышение уровня ретикулоцитов в крови может свидетельствовать о кровопотере.

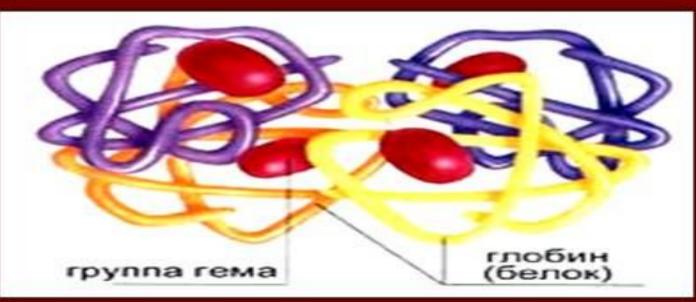


Основная функция эритроцитов - дыхательная - транспортировка кислорода и углекислоты. Эта функция обеспечивается дыхательным пигментом - **гемоглобином** - сложным белком, имеющим в своем составе железо.

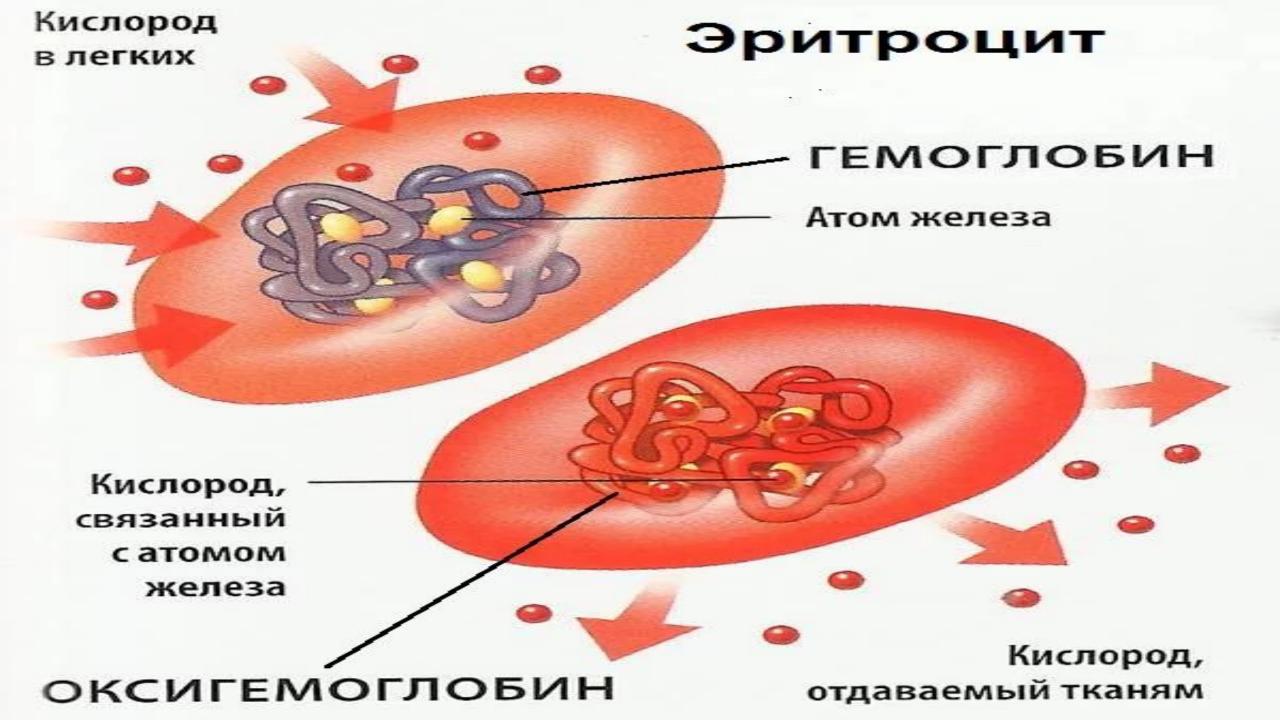
В норме в крови у мужчин содержится 4,0 - 5,0х10¹²/л, или 4 ООО 000 - 5 000 000 эритроцитов в 1 мкл, у женщин - 4,5х10¹²/л, или 4 500 000 в 1 мкл.

Эритроциты человека лишены ядра и состоят из стромы, заполненной гемоглобином, и белково-липидной оболочки. Эритроциты имеют преимущественно форму двояковогнутого диска. Эритроциты такой формы называются нормоцитами. Особая форма эритроцитов приводит к увеличению диффузионной поверхности, что способствует лучшему выполнению основной функции эритроцитов - дыхательной.

Специфическая форма обеспечивает также прохождение эритроцитов через узкие капилляры. Лишение ядра не требует больших затрат кислорода на собственные нужды и позволяет более полноценно снабжать организм кислородом.



Гемоглобин - это сложный белок, состоящий из 4 полипептидных цепей **глобина и гема** (железосодержащий порфирин), обладающий высокой способностью связывать кислород.


- В норме у человека содержится два типа гемоглобина **HbA и HbF. У взрослых людей** в эритроцитах преобладает **HbA** (от англ. adult взрослый), составляя 98 %.
- **HbF,** или фетальный гемоглобин (от англ. foetus плод), составляет у взрослых около 2 % и преобладает у плодов.
- К моменту рождения ребенка HbF составляет около 80 %, а HbA только 20 %. Сродство к кислороду у фетального гемоглобина выше, чем у гемоглобина взрослых. В результате кислород из крови матери легко переходит к фетальному гемоглобину плода.
- **Железо** (Fe^2+) в геме может присоединять O_2 в легких (оксигемоглобин) и отдавать его в тканях; валентность Fe^2+ не изменяется.

эритроцит заполнен гемоглобином

- 1. Гемоглобин состоит из четырех белковых нитей.
- 2. К каждой нити прикреплен один гем.
- 3. Гем содержит атом железа и способен удерживать одну молекулу кислорода.

- Гемоглобин способен связывать O_2 в легких, при этом образуется **оксигемоглобин**, который транспортируется ко всем органам и тканям и там отдает O_2 .
- В тканях выделяемая СО₂ поступает в эритроциты и соединяется с НЬ, образуя карбогемоглобин.
- Кроме этого, в ряде случаев, в крови могут образовываться патологические формы гемоглобина:
- 1) Карбоксигемоглобин (НьСО) соединение гемоглобина с угарным газом (окисью углерода); сродство железа гемоглобина к угарному газу превышает его сродство к О2, поэтому даже 0,1% угарного газа в воздухе ведет к превращению 80% гемоглобина в карбоксигемоглобин, который неспособен присоединять О2, что является опасным для жизни. Слабое отравление угарным газом обратимый процесс. Вдыхание чистого кислорода увеличивает скорость расщепления карбоксигемоглобина в 20 раз.
- 2) Метемоглобин (MetHb) соединение, в котором под влиянием сильных окислителей (анилин, бертолетова соль, фенацетин и др.) железо гема из двухвалентного превращается в трехвалентное. При накоплении в крови большого количества метгемоглобина транспорт кислорода тканям нарушается, и может наступить смерть.

При разрушении эритроцитов (старых или при воздействии различных факторов - токсины, радиация и др.) гемоглобин выходит из клеток, и это явление называется гемолизом.

Виды гемолиза:

Осмотический гемолиз происходит в гипотонических растворах. Под действием осмотических сил вода поступает из гипотонического раствора внутрь эритроцитов. Они набухают, мембрана их растягивается, а затем под действием механических сил разрушается. При этом раствор, содержащий кровь, становится прозрачным и приобретает ярко-красный цвет («лаковая кровь»).

Механический гемолиз возникает при механическом повреждении мембран эритроцитов (например, при сильном встряхивании пробирки с кровью или прохождении крови через аппараты искусственного кровообращения, гемодиализа).

Термический гемолиз возникает при воздействии на кровь высоких либо низких температур. **Химический, или биологический, гемолиз** возникает при разрушении мембран эритроцитов различными химическими веществами/

Биологический гемолиз - это процесс, постоянно протекающий в организме, в результате которого в селезенке происходит захват из кровотока и разрушение «старых» (эритроциты живут до 120 дней) эритроцитов макрофагами. А так же при укусах пчел, ядовитых змей, переливании несовместимой по групповой принадлежности крови, малярии, очень больших физических нагрузках.

Анемией или малокровием называется уменьшение содержания эритроцитов и (или) гемоглобина в единице объема крови, часто сочетающееся с их качественными изменениями. Чаше всего в клинической практике недостаточность функции эритроцитов отмечается при анемиях.

Анемии возникают на почве:

- различных заболеваний и интоксикаций;
- недостатка факторов, участвующих в кроветворении;
- гипоплазии костного мозга;
- · гемолиза эритроцитов;
- · кровопотерь и т. д.
- При анемиях нарушается дыхательная функция крови доставка кислорода к тканям. В случае прогрессирующей анемии наступает тяжелая кислородная недостаточность, которая может стать причиной смерти.
- Для различных видов анемий характерны не только уменьшение количества эритроцитов и гемоглобина, но и качественные изменения эритроцитов крови, степени их зрелости, размеров, формы, окраски, структуры и биохимических свойств.

Острая постгеморрагическая анемия. Причинами острой анемии от кровопотерь являются внешние травмы (ранения) или кровотечения из внутренних органов.

Острая постгеморрагическая анемия относится к анемиям регенераторным, так как с 4 - 5-го дня после кровопотери начинается интенсивная продукция эритроцитов под влиянием эритропоэтина и продуктов распада эритроцитов. В костном мозге увеличивается содержание эритро- и нормобластов. В периферической крови обнаруживаются клетки физиологической регенерации: увеличивается количество ретикулоцитов и др.

Хроническая постгеморрагическая анемия. Причиной ее являются повторяющиеся кровопотери, например, при язве желудка, фиброме матки, геморроидальные и другие кровотечения.

Железодефицитные анемии составляют наибольший процент среди всех случаев малокровия.

Основные причины железодефицитных анемий следующие: 1) хронические кровопотери (вместе с эритроцитами теряется железо); 2) нарушение всасывания железа (удаление желудка, отсутствие секреции соляной кислоты, заболевания кишечника - энтериты); 3) повышенное расходование запасов железа (беременность, лактация, период роста у детей); 4) нару шение включения железа в синтез гема (наследственный дефект ферментов, отравление свинцом).

Железодефицитная анемия может сочетаться с тканевым дефицитом железа в организме, признаками которого являются: ломкость ногтей, выпадение волос, атрофический процесс в слизистой оболочке желудка (атрофический гастрит) и другие симптомы.

В12-дефицитные и фолиеводефицитные анемии.

- Основными причинами являются нарушение всасывания или повышенное рас ходование витамина **В12 и фолиевой кислоты**, реже недостаточное поступление их с пищей.
- Нарушение всасывания витамина В12 наиболее выражено при анемии **Аддисона Бирмера** развитие которой обусловлено отсутствием в желудочном соке больных **внутреннего фактора Касла**.
- В отсутствие фактора Касла витамин В12 разрушается в кишечнике и не усваивается.
- Для анемии Аддисона Бирмера характерны и другие признаки авитаминоза В12: «полированный язык» из-за атрофии сосочков языка, шаткая походка.
- Дефицит фактора Касла создается также после резекции желудка. Витамин В12 и фолиевая кислота плохо усваиваются при различных поражениях тонкого кишечника (резекция кишки, паразитирование широкого лентеца, энтериты). Дефицитная анемия наблюдается иногда у беременных. Причиной служит интенсивное потребление плодом витамина В12 и фолиевой кислоты (на IV —V месяце развития).

Гипо- и апластические анемии возникают от токсического действия на костный мозг ионизирующей радиации, некоторых химических и ле карственных средств (бензол, цитостатические препараты, антибиоти ки), наблюдаются при инфекционных заболеваниях, нарушениях гор мональной регуляции эритропоэза, аутоиммунных процессах. Замещение кроветворной ткани опухолевыми клетками (при лейкозах, метастазах рака в костный мозг) приводит к развитию метапластической анемии. При воздействии на костный мозг указанных выше факторов повреждаются и гибнут стволовые клетки, подавляются процессы деления и созревания кроветворных клеток, сокращается объем кроветворной ткани, что ведет к опустошению (аплазии) костного мозга. Отмечается прогрессирующее падение эритропоэза.

Как правило, анемия сочетается с лейкопенией и тромбоцитопенией.

Анемии вследствие повышенного кроворазрушения (гемолитические).

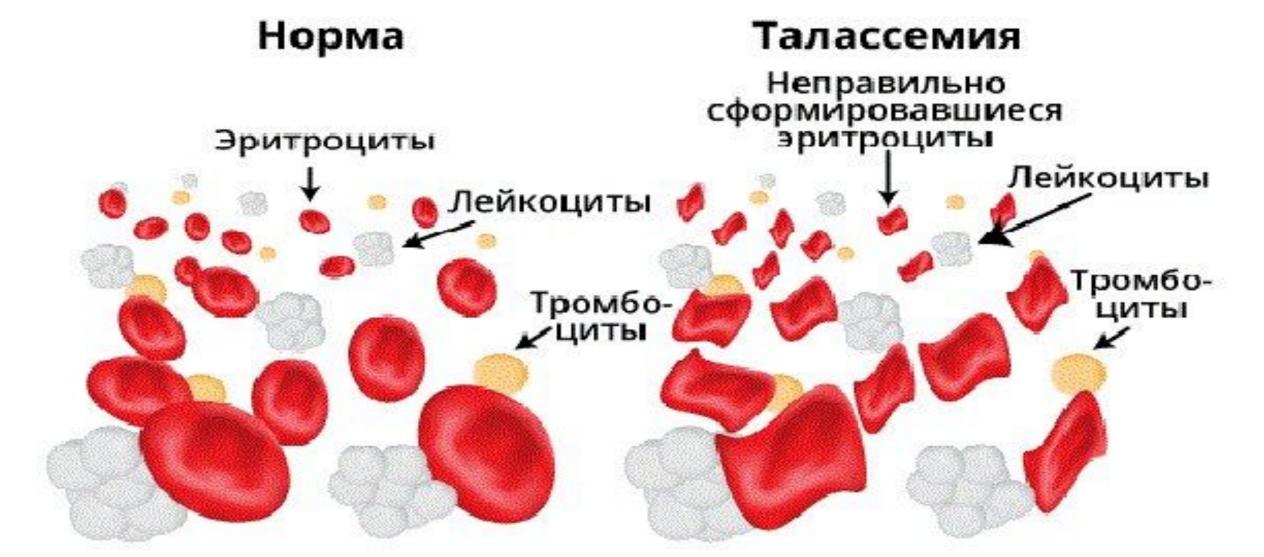
Главным фактором в возникновении этого вида анемии является укорочение срока жизни эритроцитов и преобладание процесса разрушения эритроцитов над их продукцией. Гемолитические анемии сопровождаются желтухой вследствие избытка в крови и отложения в тканях пигмента билирубина. Источником его служит гемоглобин разрушенных эритроцитов.

Приобретенные гемолитические анемии обусловлены преимущественно внутрисосудистым гемолизом эритроцитов вследствие повреждения их мембраны разными агентами.

- Причиной приобретенных гемолитических анемий являются:
- 1) отравление гемолитическими ядами;
- 2) некоторые инфекционные и паразитарные заболевания (анаэробный сепсис, малярия);
- 3) переливание несовместимой крови или резус-несовместимость плода и матери;
- 4) образование в организме аутоантител против собственных эритроцитов;

Наследственные гемолитические анемии возникают в результате наследования патологических типов гемоглобинов (*гемоглобинопатии*), патологических форм эритроцитов (*эритроцитопатии*) и эритроцитов с дефицитом ферментов (*энзимопатии*).

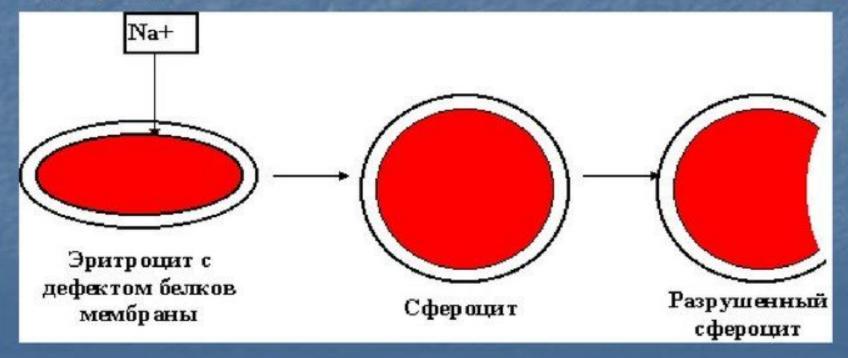
<u>Гемоглобинопатии</u> - это генетически обусловленные нарушения строения гемоглобина. Примерами наиболее часто встречающихся гемоглобинопатий явля ются серповидноклеточная анемия и талассемия.


Серповидноклеточная анемия возникает от наследования патологического HbS. Эритроциты приобретают вид серпа при снижении парциального давления кислорода в крови (гемоглобин при этом осаждается и стягивает мембрану эритроцитов). Этот вид анемии встречается у населения тропической Африки и некоторых областей Индии и наследуется по рецессивному типу.

Талассемия (средиземноморская анемия) обусловлена нарушением синтеза α- или β-цепи нормального НЬА. Для этого заболевания типичны эритроциты в виде «мишени», сильно прокрашенные по периферии и в центре.

ЭРИТРОЦИТЫ

ТАЛАССЕМИЯ

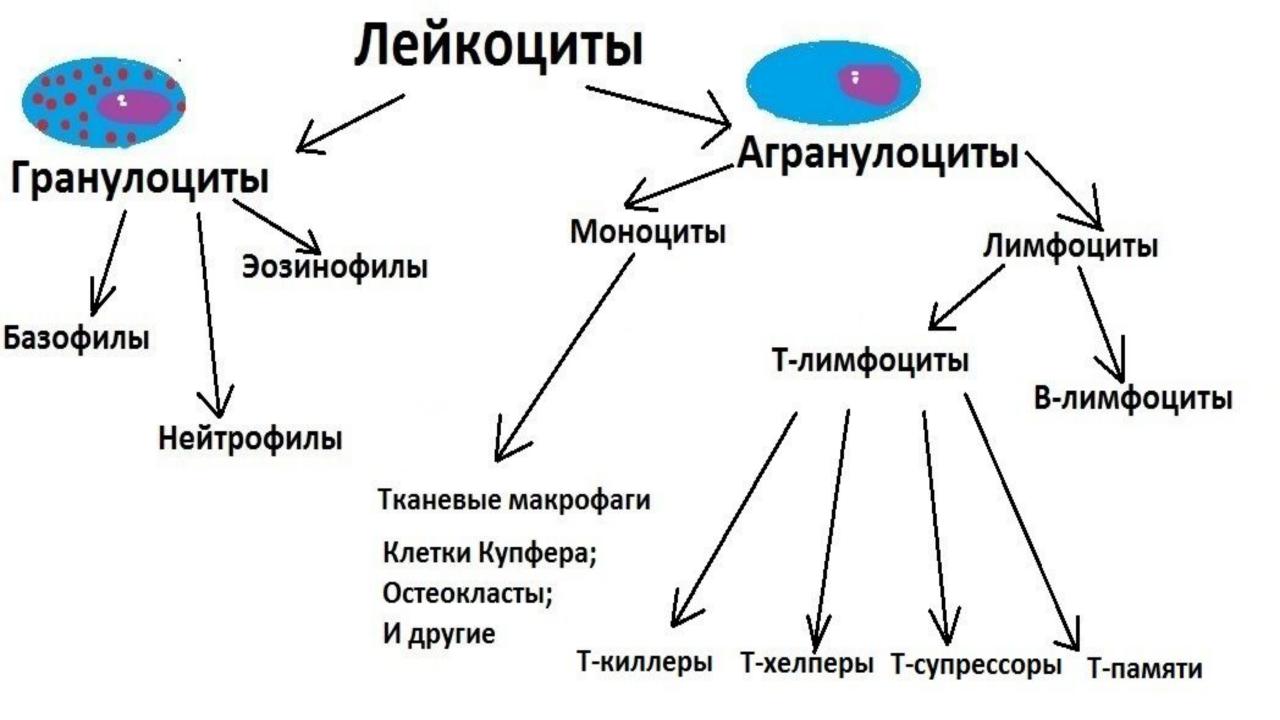

К эритроцитопатиям относят гемолитические анемии, обусловленные генетическим дефектом белковой или липидной структуры мембраны эритроцитов. В этих случаях форма эритроцитов (шаровидная, овальная, с зазубренными краями и др.) и сокращается продолжительность их жизни. Например, при наследственной сфероцитарной анемии повыше на проницаемость мембраны эритроцитов к натрию. Вместе с натрием в клетку проникает вода, объем эритроцитов увеличивается, они приоб ретают форму шара, их механическая и осмотическая устойчивость рез ко снижается. Шаровидные эритроциты (сфероциты) циркулируют в кровеносном русле не более 12 - 14 дней.

Деформированные эритроциты становятся ригидными, малоэластичными. Поэтому, проходя с трудом через мельчайшие сосуды, они повреждаются, захватываются макрофагами селезенки и печени и там подвергаются преждевременному гемолизу. Печень и селезенка у больных увеличены.

Наследственный сфероцитоз (болезнь Минковского – Шоффара)

-это наиболее клинически значимая форма наследственных гемолитических анемий из группы мембранопатий — аутосомно — доминантное заболевание, при котором аномальные эритроциты разрушаются в неизменённой селезёнке.

Патогенез: дефицит белка спектрина

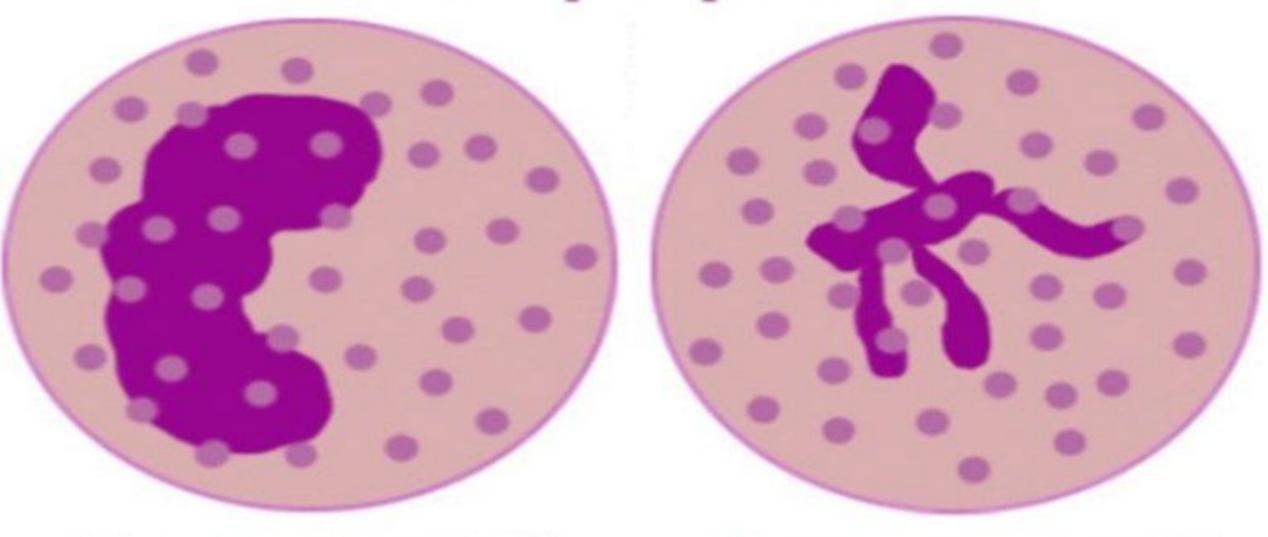


Лейкоциты

Лейкоциты, или белые кровяные клетки, отвечают в организме за иммунитет. Их общее количество в 1 л в норме составляет 4—9 * 10⁹. Они крупнее эритроцитов и имеют ядро. Лейкоциты могут изменять свою форму, многие из них способны переходить из просвета кровеносных сосудов в ткани.

Лейкоциты делят на две группы: зернистые(гранулоциты) и незернистые (агранулоциты).

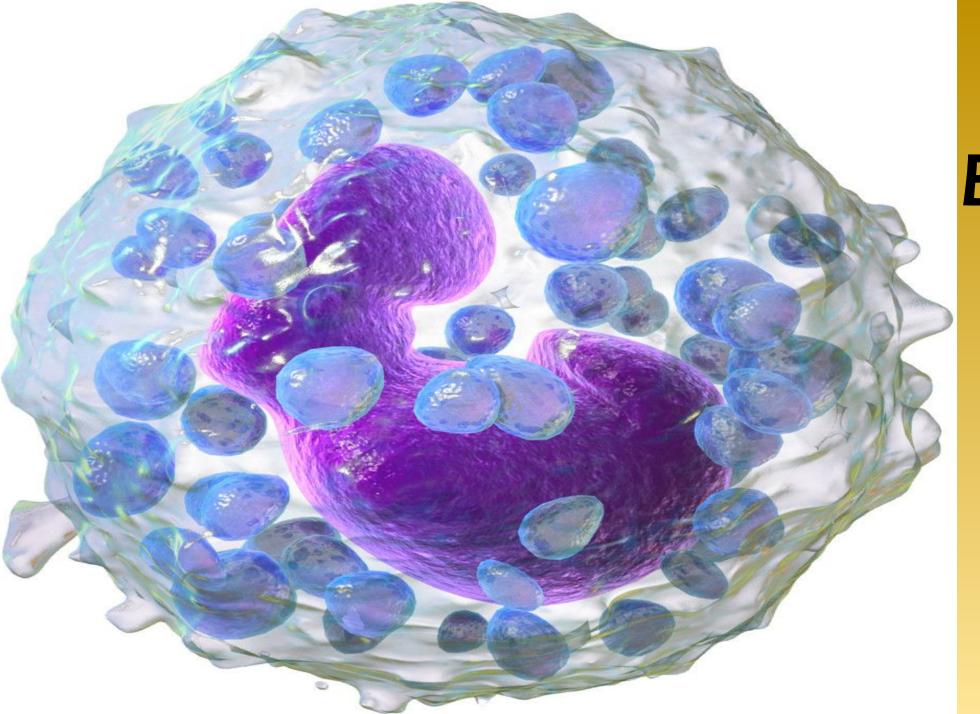
К гранулоцитам относят: нейтрофилы (нейтрофильные лейкоциты), эозинофилы (эозинофильные лейкоциты), базофилы (базофильные лейкоциты). Все они характеризуются наличием зернистости в цитоплазме. В зернах содержатся ферменты, которые способны уничтожать чужеродные агенты и различные биологически активные вещества: гистамин, гепарин. К незернистым лейкоцитам относят моноциты и лимфоциты.


Различают пять видов лейкоцитов: эозинофилы (1 - 4% от числа всех лейкоцитов), базофилы (0-0,5%), нейтрофилы (60-10%), лимфоциты (25-30%) и моноциты (6-8%). Лейкоциты неодинаковы по величине, форме ядер, свойствам цитоплазмы и функциям. Диаметр их колеблется от 6 до 25

MKM.

- **Нейтрофилы** самая большая группа белых кровяных телец, они составляют 50-75% всех лейкоцитов.
- В крови циркулирует не более 1% имеющихся в организме нейтрофилов. Основная их часть сосредоточена в тканях. Наряду с этим, в костном мозге имеется резерв нейтрофилов. Выброс их в кровь происходит по «первому требованию» организма.
- Основная функция нейтрофилов защита организма от проникших в него микробов и их токсинов. Нейтрофилы первыми прибывают в место повреждения тканей. Их появление в очаге воспаления связано со способностью к активному передвижению. Они проходят через стенку капилляров и активно перемещаются в тканях к месту проникновения микробов. Выход лейкоцитов в ткани называют миграцией. Контактируя с живыми или мертвыми микробами, с разрушающимися клетками собственного организма или чужеродными частицами, нейтрофилы фагоцитируют их, переваривают и уничтожают за счет собственных ферментов и бактерицидных веществ.

Нейтрофилы

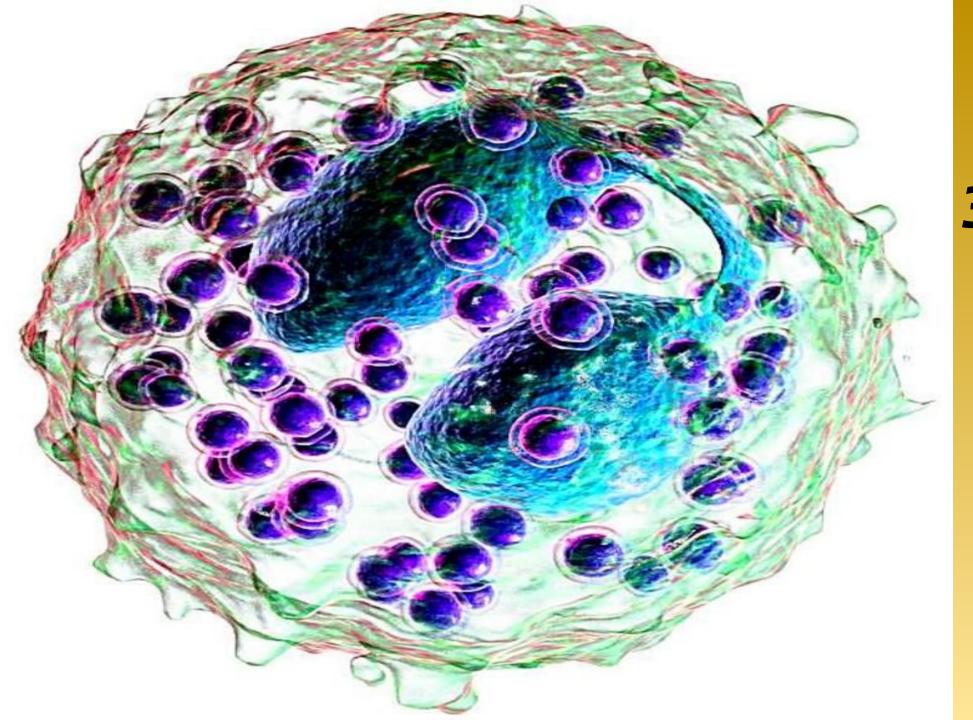

Палочкоядерный

Сегментоядерный

- **Базофилы** (0-1 % всех лейкоцитов) самая малочисленная группа гранулоцитов.
- Функции базофилов обусловлены наличием в них биологически активных веществ. Они, как и тучные клетки соединительной ткани, продуцируют гистамин и гепарин.

Гепарин базофилов препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует процессам рассасывания и заживления.

Значение базофилов возрастает при различных аллергических реакциях, когда из них и тучных клеток под влиянием комплекса антиген-антитело освобождается гистамин. Он определяет клинические проявления крапивницы, бронхиальной астмы и других аллергических заболеваний.

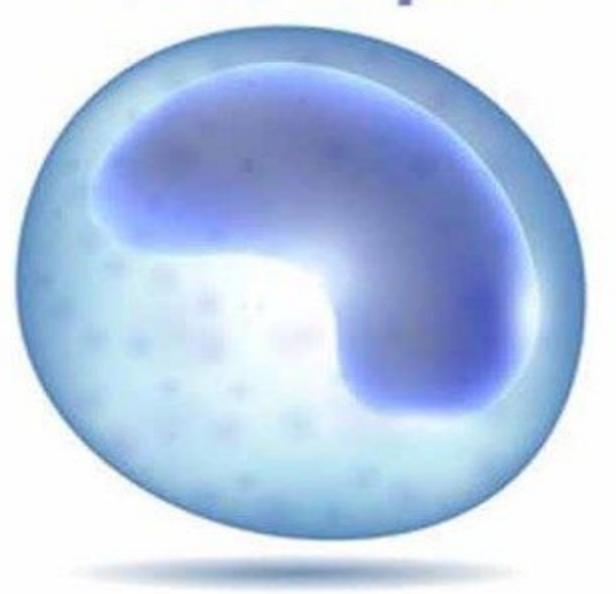


Базофил

Эозинофилы составляют 1-5% всех лейкоцитов.

Эозинофилы обладают фагоцитарной способностью, но из-за малого количества в крови их роль в этом процессе невелика. Эозинофилы фагоцитируют гранулы базофилов и тучных клеток, которые содержат много гистамина; продуцируют фермент гистаминазу, разрушающую поглощенный гистамин.

При аллергических состояниях, глистной инвазии и антибактериальной терапии количество эозинофилов возрастает. Это связано с тем, что при данных состояниях разрушается большое количество тучных клеток и базофилов, из которых освобождается много гистамина, для нейтрализации которого необходимы эозинофилы.



Эозинофил

Моноциты составляют 2-4% всех лейкоцитов, способны к амебовидному движению, проявляют выраженную фагоцитарную и бактерицидную активность. Моноциты появляются в очаге воспаления после нейтрофилов и проявляют максимум активности в кислой среде, в которой нейтрофилы теряют активность. В очаге воспаления моноциты фагоцитируют микробы, а также погибшие лейкоциты, поврежденные клетки воспаленной ткани, очищая очаг воспаления и подготавливая его для регенерации.

- Они циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство **тканевых макрофагов.**
- Кроме фагоцитоза, макрофаги участвуют в формировании **специфического иммунитета**.
- Макрофаги участвуют в процессах воспаления и регенерации, обладают противоопухолевым и противовирусным действием.

Моноцит

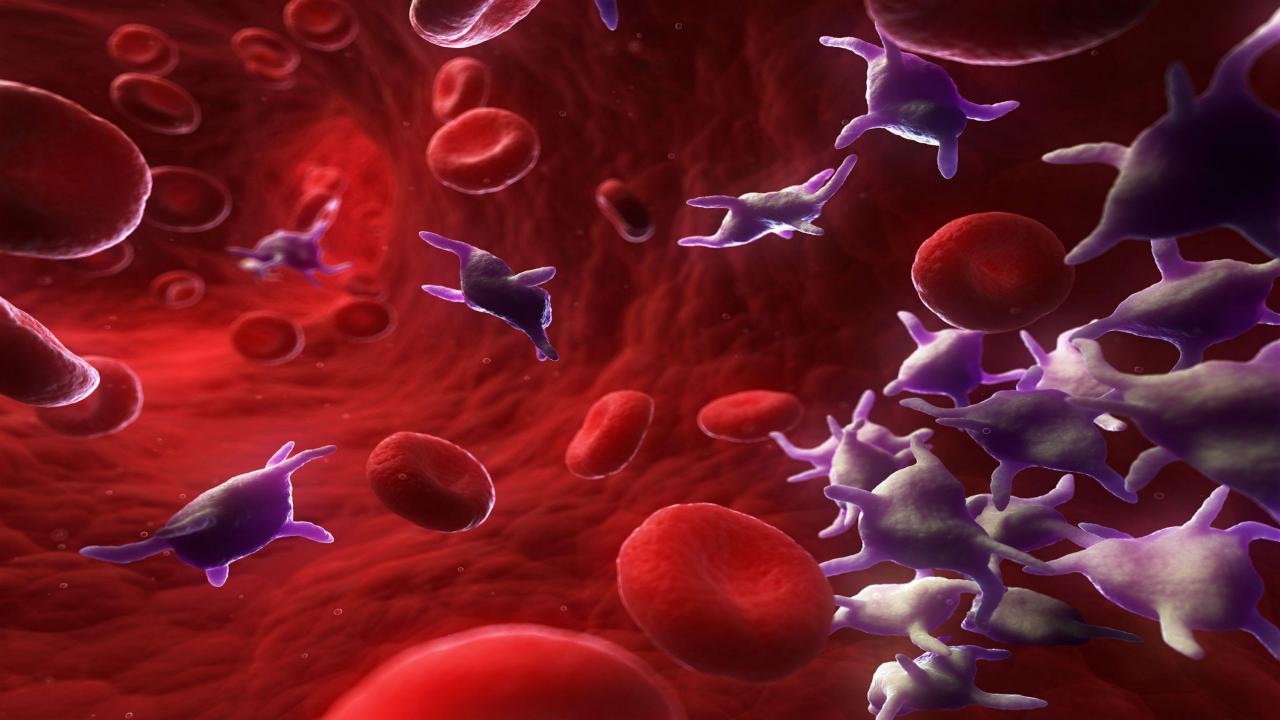
- **Лимфоциты** это агранулоциты. Количество их составляет 20-30% от общего числа лейкоцитов. Большая часть лимфоцитов (98%) находится в тканях. Выделяют два основных вида лимфоцитов: **Т-лимфоциты и В-лимфоциты**. Кроме того, отдельную группу составляют **нулевые лимфоциты**, которые не относятся ни к В-, ни к Т-лимфоцитам.
- Развиваются все лимфоциты **из стволовой кроветворной клетки в красном костном мозге.** Однако Т-лимфоциты в последующем созревают **в тимусе,** тогда как В-лимфоциты после дифференцировки в красном костном мозге оседают в тимуснезависимых зонах **селезенки и лимфатических узлов.** Каждый из этих видов лимфоцитов подвергается еще более узкой специализации, участвуя в иммунных реакциях как структурные элементы **клеточного и гуморального иммунитета.**
- Т-лимфоциты долгоживущие. В-лимфоциты короткоживущие. Для лимфоцитов характерны **циркуляция и рециркуляция** выход из крови в ткани, переход из ткани и циркуляция в составе лимфы, возвращение в ткани.

Тромбоцит

Тромбоцит, или кровяная пластинка - участвующий в свертывании крови форменный элемент, необходимый для поддержания целостности сосудистой стенки. Представляет собой округлое или овальное безъядерное образование диаметром 2-5 мкм. Тромбоциты образуются в красном костном мозге. В 1 мкл (мм³) крови у человека в норме содержится 180-320 тысяч тромбоцитов. Увеличение количества тромбоцитов в периферической крови называется **тромбоцитозом**, уменьшение - **тромбоцитопенией**. Продолжительность жизни тромбоцитов составляет 2-10 дней.

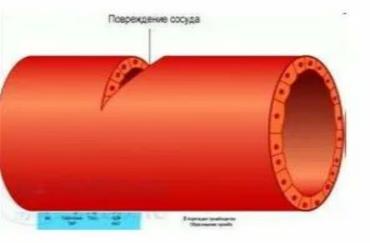
Основными физиологическими свойствами тромбоцитов являются:

- 1) амебовидная подвижность за счет образования ложноножек;
- 2) фагоцитоз, т.е. поглощение инородных тел и микробов;
- 3) прилипание к чужеродной поверхности и склеивание между собой, при этом они образуют 2-10 отростков, за счет которых происходит прикрепление;
- 4) легкая разрушаемость;
- 5) выделение и поглощение различных биологически активных веществ типа серотонина, адреналина, норадреналина и др.;
- 6) содержат в себе много специфических соединений (тромбоцитарных факторов), участвующих в свертывании крови: тромбоцитарный тромбопластин, антигепариновый, свертывающий факторы, тромбостенин, фактор агрегации и т.д.

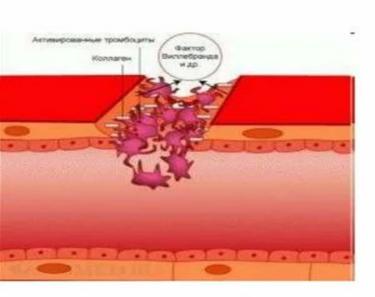

Все эти свойства тромбоцитов обусловливают их участие в остановке кровотечения.

Функции тромбоцитов:

- 1) активно участвуют в процессе свертывания крови и растворения кровяного сгустка (фибринолиза);
- 2) участвуют в остановке кровотечения (гемостазе) за счет присутствующих в них биологически активных соединений;
- 3) выполняют защитную функцию за счет склеивания (агглютинации) микробов и фагоцитоза;
- 4) вырабатывают некоторые ферменты (амилолитические, протеолитические и др.), необходимые для нормальной жизнедеятельности тромбоцитов и для процесса остановки кровотечения;
- 5) оказывают влияние на состояние гистогематических барьеров между кровью и тканевой жидкостью путем изменения проницаемости стенок капилляров;
- 6) осуществляют транспорт креаторных веществ, важных для сохранения структуры сосудистой стенки; без взаимодействия с тромбоцитами эндотелий сосудов подвергается дистрофии и начинает пропускать через себя эритроциты.



крови — эритроциты



- **Гемостаз** (греч. *haime*-кровь, *stasis*-неподвижное состояние) это остановка движения крови по кровеносному сосуду, т.е. остановка кровотечения. Различают 2 механизма остановки кровотечения:
- 1) сосудисто-тромбоцитарный (микроциркуляторный) гемостаз;
- 2) коагуляционный гемостаз (свертывание крови).
- Первый механизм способен самостоятельно за несколько минут остановить кровотечение из наиболее часто травмируемых мелких сосудов с довольно низким кровяным давлением. Он слагается из двух процессов:
- 1) сосудистого спазма, приводящего к временной остановке или уменьшению кровотечения;
- **2) образования, уплотнения и сокращения тромбоцитарной пробки,** приводящей к полной остановке кровотечения.

Фазы сосудисто-тромбоцитарного гемостаза

- 1) Спазм поврежденных сосудов:
- первичный спазм (10-15 с)
- повторная вазоконстрикция

2) Адгезия (прилипание) тромбоцитов: с помощью рецепторов, которые способны прикрепляться к фактору Виллебранда, коллагену, фибронектину в зоне повреждения сосуда.

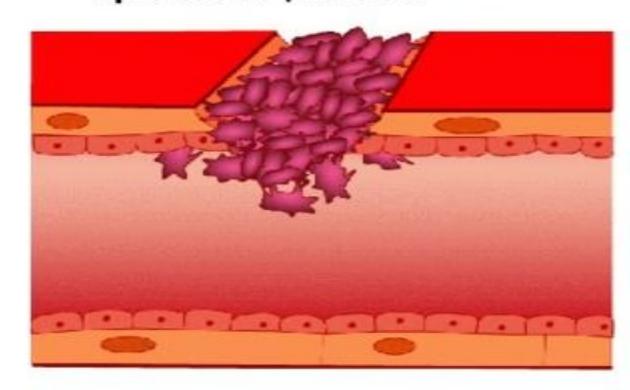
Второй механизм остановки кровотечения - свертывание крови (гемокоагуляция) обеспечивает прекращение кровопотери при повреждении крупных сосудов, в основном мышечного типа.

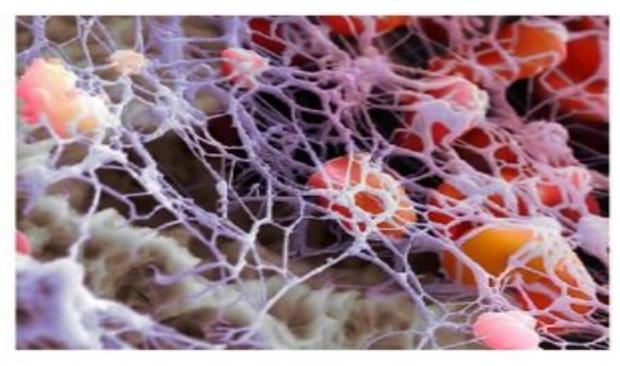
Осуществляется в три фазы:

I фаза - формирование протромбиназы;

II фаза - образование тромбина;

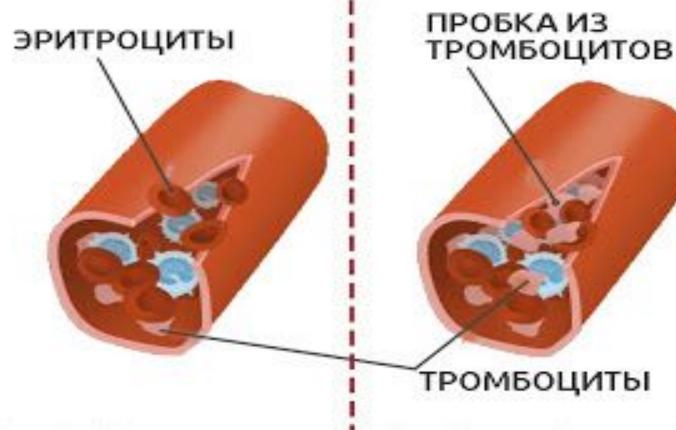
III фаза - превращение фибриногена в фибрин.


В механизме свертывания крови, помимо стенки кровеносных сосудов и форменных элементов, принимает участие 15 плазменных факторов. Большинство этих факторов образуется в печени при участии витамина К и является проферментами, относящимися к глобулиновой фракции белков плазмы. В активную форму - ферменты они переходят в процессе свертывания. Для осуществления всех фаз процесса свертывания необходимы ионы кальция.


Сеть из волокон нерастворимого фибрина и опутанные ею эритроциты, лейкоциты и тромбоциты образуют кровяной сгусток. Плазма крови, лишенная фибриногена и некоторых других веществ, участвующих в свертывании, называется сывороткой. А кровь, из которой удален фибрин, называется дефибринированной.

Время полного свертывания капиллярной крови в норме составляет 3-5 минут, венозной крови - 5-10 мин.

Механизмы свёртывания


- Сужение сосуда.
- Адгезия (сцепление)
 и агрегация
 (слипание)
 тромбоцитов.
- Тромбоциты тромбопластин. Витамин К ,Ca₂₊.
- Протромбин тромбин.
- Фибриногей фибрин.

СВЁРТЫВАНИЕ КРОВИ

Процесс свёртывания крови начинается, когда тромбоциты становятся клейкими ТРОМБОЦИТЫ

Тромбоциты образуют пробку.
Это предотвращает потерю крови во время заживления

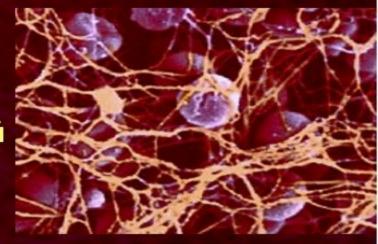
Факторы свёртывания вызывает образование сети из волокон фибрина

Свертывание крови

Коагуляция — процесс свёртывания крови.

Свертывание крови

Повреждение тромбоцитов


Фермент протромбин

тромбин

Cat

Фибриноген (растворимый белок)

Фибрин (нерастворимый волокнистый белок)

Гемофилия!

Тромб – сгусток крови Кроме свертывающей системы, в организме имеются одновременно еще две системы: **противосвертывающая и фибринолитическая.**

Противосвертывающая система препятствует процессам внутрисосудистого свертывания крови. Главным антикоагулянтом этой системы является **гепарин,** выделяемый из ткани легких и печени, и продуцируемый базофильными лейкоцитами. Гепарин тормозит все фазы процесса свертывания крови.

Фибринолитическая система способна растворять образовавшийся фибрин и тромбы и является антиподом свертывающей системы. Главная функция фибринолиза - расщепление фибрина и восстановление просвета закупоренного сгустком сосуда. Расщепление фибрина осуществляется ферментом плазмином (фибринолизином).

Нарушение функциональных взаимосвязей между свертывающей, противосвертывающей и фибринолитической системами может привести к тяжелым заболеваниям: повышенной кровоточивости, внутрисосудистому тромбообразованию и даже эмболии.

Группы крови

- В 1901 г. австриец К. Ландштейнер и в 1903 г. чех Я. Янский обнаружили, что при смешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом явление агглютинации с последующим их разрушением (гемолизом).
- Было установлено, что в эритроцитах имеются **агглютиногены A и B**, антигены. Тогда как в плазме были найдены **агглютинины** α **и** β , антитела, склеивающие эритроциты.
- Агглютиногены A и B в эритроцитах, как и агглютинины α и β в плазме, у разных людей могут быть по одному или вместе, либо отсутствовать.
- Агглютиноген A и агглютинин α , а также B и β называются одноименными.
- Склеивание эритроцитов происходит в том случае, если **эритроциты донора** (человека, дающего кровь) встречаются с **одноименными агглютининами реципиента** (человека, получающего кровь), т.е. $A + \alpha$, $B + \beta$, или $AB + \alpha\beta$.
- Отсюда ясно, что в крови каждого человека находятся **разноименные**

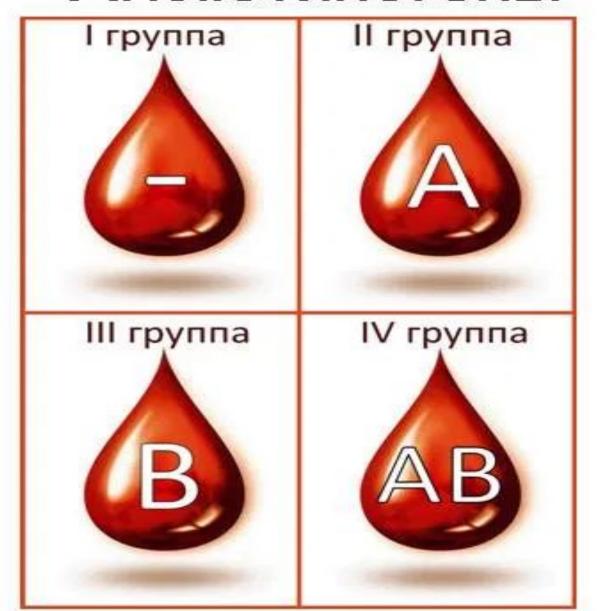
агглютиноген и агглютинин.

Согласно классификации Я. Янского и К. Ландштейнера у людей имеется 4 комбинации агглютиногенов и агглютининов-система АВО, которые обозначаются следующим образом:

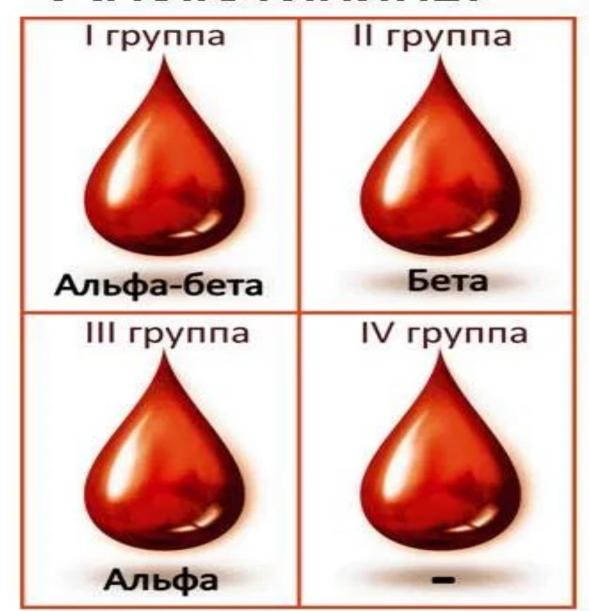
IV - AB.

Из этих обозначений следует, что у людей I группы в эритроцитах отсутствуют агглютиногены A и B, а в плазме имеются оба агглютинина α и β.

- У людей II группы эритроциты имеют агглютиноген A, а плазма агглютинин β . K III группе относятся люди, у которых в эритроцитах находится агглютиноген B, а в плазме агглютинин α .
- У людей IV группы в эритроцитах содержатся оба агглютиногена A и B, а агглютинины в плазме отсутствуют.

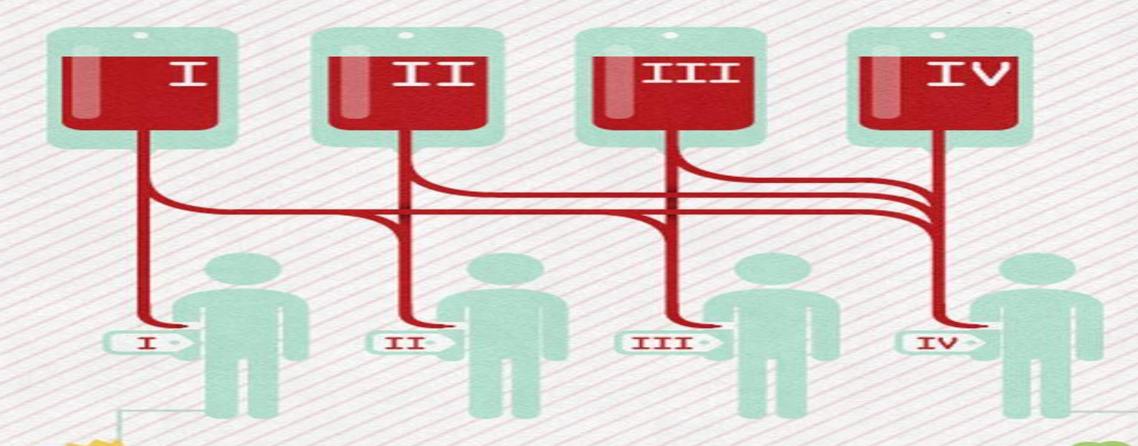

Исходя из этого, нетрудно представить, каким группам можно переливать кровь определенной группы.

Особенности крови людей разных групп


Группы крови	Антигены (агглютиногены) в эритроцитах	Антитела (агглютинины) в плазме	Частота встречаемости, в %
I	Отсутствуют	α, β	33,5
II	A	β	37,8
III	\boldsymbol{B}	α	20,5
IV	A, B	Отсутствуют	8,1

Агглютиногены

Агглютинины



Людям I группы можно переливать кровь только этой группы. Кровь же I группы можно переливать людям всех групп. Поэтому людей с I группой крови называют универсальными донорами.

Людям с IV группой можно переливать кровь всех групп, поэтому этих людей называют универсальными реципиентами. Кровь же IV группы можно переливать людям с кровью IV группы.

Кровь **людей II и III групп** можно переливать людям с одноименной, а также с IV группой крови.

ΠΕΡΕΛИΒΑΗИЕ ΚΡΟΒИ

УНИВЕРСАЛЬНЫЙ ДОНОР

Кровь I группы можно переливать человеку с любой другой группой крови.

УНИВЕРСАЛЬНЫЙ РЕЦИПИЕНТ

Человеку с IV группой крови можно переливать кровь любой группы.

Однако в настоящее время в клинической практике переливают только одногруппную кровь, причем в небольших количествах (не более 500 мл), или переливают недостающие компоненты крови (компонентная те рапия).

Это связано с тем, что:

- **во-первых,** при больших массивных переливаниях разведения агглютининов донора не происходит, и они склеивают эритроциты реципиента;
- **во-вторых**, при тщательном изучении людей с кровью І группы были обнаружены иммунные агглютинины анти-А и анти-В (у 10-20% людей); переливание такой крови людям с другими группами крови вызывает тяжелые осложнения.
- **в-третьих**, в системе ABO выявлено много вариантов каждого агглютиногена. Так, агглютиноген A существует более, чем в 10 вариантах. Агглютиноген B тоже существует в нескольких вариантах.

Резус-фактор

Это еще один белок-маркер. У 85 % людей он присутствует на поверхности эритроцитов, поэтому их кровь резус-положительная (Rh+). У остальных людей нет резус-фактора, следовательно, их кровь резус-отрицательных людей в обычных условиях антитела к данному белку-маркеру не вырабатываются. Они появляются только при попадании в их организм эритроцитов, имеющих на своей поверхности резус-фактор. Следует отметить, что выработка антирезус-антител происходит довольно медленно. Поэтому наибольшую опасность представляет повторный контакт с резус-положительной кровью. Все это сопровождается возникновением агглютинации, как и при переливании крови, несовместимой по системе ABo. Такая возможность существует в следующих случаях:

)повторное переливание резус-положительной крови резус-отрицательному реципиенту;
)формирование резус-конфликта возможно при беременности резус-отрицательной женщины резусположительным плодом (наследование этого фактора от отца); при этом первая беременность может протекать нормально, однако внутриутробное развитие второго ребенка приводит к осложнениям, так как в организме матери образуются антирезус-антитела против эритроцитов плода, эти антитела попадают в его организм и происходит гемолиз, который может привести к гибели ребенка или развитию внутриутробной патологии (гемолитическая болезнь новорожденного). В настоящее время при ранней диагностике данного состояния проводится ряд мероприятий, позволяющих исключить гемолиз и формирование каких-либо отклонений в развитии плода.