THz pump-probe

Лекция 29 марта 2020 года

TRTS – ТГц спектроскопия с временным разрешением

Схема спектрометра для TRTS

Временной анализ принятого сигнала

$$S_{\text{det}}(\tau_{\text{rec}}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} S_{\text{laser}}(t - t' - \tau_{\text{rec}}) G(t') S_{\text{THz}}(t) dt' dt.$$

 $S_{\text{THz}}(t)$ - ТГц сигнал, который падает на приемник, G(t) это в ремянной отклик приемника $S_{\text{laser}}(t)$ профиль временного импульса на приемнике τ_{rec} - время задержки между источником и детектором.

Это некоторая общая формула для метода анализа временного отклика

ТГц отклик образца при его исследовании

$$S_{\text{THz}}(t) = \int_{-\infty}^{+\infty} S_{\text{THz,emit}} \left(t - t''\right) T\left(t''\right) dt''.$$

временной отклик образца – обратное преобразование Фурье от спектра пропускания

$$T(t) \equiv T(t, \tau) = T_{o}(t) + \Delta T(t - \tau).$$

 $T_{o}(t)$ и $\Delta T(t - \tau)$ Временной отклик «не обученного» и «облученного» образцов

$$S_{\text{det}}(\tau_{\text{rec}}, \tau) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} S_{\text{laser}}(t - t' - \tau_{\text{rec}}) S_{\text{THz,emit}}(t - t'')$$
$$\times T(t'', \tau) G(t') dt dt' dt''. \qquad ($$

Свойство фото-индуцированного отклика среды

$$T(t, \tau) = T_{o}(t) + \int_{-\infty}^{t} \chi(t - t') I_{\text{laser}}(t', \tau) dt'.$$

Фотоиндуцированный временной отклик образца не является мгновенным. Это означает, что пропускание в момент времени t зависит от фотоиндуцированных измерений, которые происходят за некоторое время до

$$T_{o}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} T_{o}(\omega) e^{j\omega t} dt.$$

По принципу причинности

$$\begin{aligned} \chi(t < 0) &= 0 \\ \Delta T(t - \tau) &= \int_{-\infty}^{+\infty} \chi(t - t') I_{\text{laser}}(t', \tau) dt'. \\ t' &\to +\infty \end{aligned}$$

Для не облучаемого образца

$$S_{o}(\tau_{rec}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{S_{laser}}^{\infty} S_{laser}(t - t' - \tau_{rec}) S_{THz,emit}(t - t'')$$

$$\times T_{o}(t'') G(t') dt dt' dt''.$$

$$S_{o}(\tau_{rec}) = \int_{-\infty}^{+\infty} [S_{THz,emit} \otimes T_{o}](t) \times [S_{laser} \otimes G](t - \tau_{rec}) dt.$$

$$\Delta S(\tau_{rec}, \tau) = \int_{-\infty}^{+\infty} [S_{THz,emit} \otimes \Delta T](t - \tau) \times [S_{laser} \otimes G](t - \tau_{rec}) dt.$$

Измеряется величина

$$S_{\text{THz,emit}} \otimes \Delta T$$
.

Пример реализации трех импульсной схемы

ТГц импульсы, излучаемые пластиной GaAs толщиной 500 мкм, который накачивается лазерным импульсом при λ = 800 нм (сплошная линия). Время задержка между оптическим возбуждением и оптическим зондом составляет т = 2,67 пс.

Пример реализации трех импульсной схемы: исследование медленные индуцированные

Разностные ТГц сигналы излучаемые пластиной 500 мкм, накачиваемой накачиваемая лазерным импульсом при λ = 800 нм. Каждая кривая соответствует разным значениям временной задержки т между оптическим возбуждением и оптическим зондированием.

Пример реализации трех импульсной схемы: исследование медленные индуцированные процессы Так как функция у нас медленно меняется, то

$$[S_{\text{THz,emit}} \otimes \Delta T](t-\tau) \approx S_{\text{THz,emit}}(t-\tau) \times \Delta T(t-\tau)$$

$$\Delta S(\tau_{\rm rec}, \tau) \approx \Delta T(\tau) \int_{-\infty}^{+\infty} S_{\rm THz, emit}(t) \left[S_{\rm laser}(t - \tau_{\rm rec}) \otimes G(t - \tau_{\rm rec})\right] dt.$$

Кинетический анализ

(а) Фотоиндуцированное изменение пропускания пластины SI-GaAs.
Экспериментальные точки соответствуют различным частотам спектра поглощения, в то время как непрерывная линия соответствует выременной динамике амплитуды ТГц импульса.
(б) фото-индуцированное изменение поглощения пластины SI-GaAs и InP: Fe. Сплошные линии экспоненциальная подгонка.

Некоторые методические замечания

H. Němec, et al., J. Chem. Phys. 122, 104503 (2005)

zero

padding

emission

Идея реализации метода

InP: Результаты

Медленные процессы

Нестационарное изменение максимума временного профиля импульса vs. Pump-Probe задержка τ_p (1D Scan). Усредненная спектральная информация о времени жизни носителей τ_c.

Временная динамика ТГц временного профиля: Комплексный спектр (действительная и мнимая части) поверхностной проводимости.

InP: Результаты исследования

Медленные процессы Поверхностная проводимость

 $\Delta \sigma(f,\tau_{\rm p}) = \frac{n(\tau_{\rm p})e_0^2}{m_{\rm eff}} \frac{\tau_{\rm s}}{1 - 2\pi i f \tau_{\rm s}}$

InP: Результаты исследований

Быстрая динамика

Динамика при легировании 10¹¹ и 10¹² см⁻² быстрая (нет quasi-dc) □ Необходимо использовать 2D БПФ

H. Němec, et al., J. Chem. Phys. **122**, 104503 (2005) Пектр

InP: Результаты исследований

Быстрая динамика

 $f_{\rm p}$ (THz)

2

3

f(THz)

0

-2

-1

n.

2D

накачки нет никаких особенностей

Хорошее согласие с моделью Друде

InP: Результаты исследований

Энергетическая зависимость

NB! Если использовать накачку большим пятном, то поперечной диффузии не будет.

Phys. Rev. B, 78, 235206 (2008)

InP Результаты: Вывод

Влияние концентрации ионов Br⁺ на объемные и параметры и параметры травления

Образец	$n_{\rm IRRAD} ({\rm cm}^{-3})$	$n_{\rm Br}({\rm cm}^{-3})$	$n_0 ({\rm cm}^{-3})$	$\tau_{s}(\phi c)$	$\mu_0 (cm^2 V^{-1} s^{-1})$	τ_{decay} (nc)
В9	2×10^{16}	0	1.6×10 ¹⁷	140	3000	490
E9	9×10 ¹⁶	5×10 ¹²	1.1×10^{17}	120	2600	70
B10	2×10^{17}	0	1.6×10 ¹⁷	120	2700	100
E10	9×10 ¹⁷	5×10 ¹³	0.9×10 ¹⁷	100	2100	5.5
B11	2×10^{18}	0	1.6×10 ¹⁷	70	1600	2.6
E11	9×10 ¹⁸	5×10 ¹⁴	2.2×10^{17}	90	2100	1.2
B12	2×10 ¹⁹	0	1.6×10 ¹⁷	40	900	0.29

Время жизни носителей:

- Плотность наведенных дефектов;
- нет влияния облучения ионами Br
 - Время захвата (trapping time) уменьшается на 3 порядка (Log)
 - Молбильность уменьшается только в три раза (Linear)

InGaAs: Результаты исследования Медленные процессы

нелегированный

f [THz]

(x=0.47)

(x=0.47)

 $m_{\rm L}^{}$ = 0.29 $m_{\rm e}^{}$

 $m_{\chi} = 0.68 \ m_{e}$

 $m_{\Gamma} = 0.041 \, m_{\rho}$

(x=0.47)

 $m_{\rm L} = 0.29 m_{\rm e}$ $m_{\rm x} = 0.68 m_{\rm e}$

 $m_{\Gamma} = 0.041 m_{P}$

... и дальнейшая медленная релаксация ...

Временная динамика In_{1-x}Ga_xAs

