Nizhny Novgorod State Technical University n. a. R. E. Alekseev

The main technical principles of neutron-capture therapy

Made by: student of M16-ЯЭ Sitnikova E.V.

Institute of Nuclear Power Engineering and Applied Physics

Boron neutron capture therapy (BNCT)

Weighted depth dose curves showing the various components

Neutron sources for capture therapy

- Converted thermal reactors using spectrum shifting and filtering
- * Fast reactors
- Fission converters
- * Accelerators
- Californium source

Example of a fission converter system

Example of an effort to minimize core to patient distance.

Typical spectrum shift arrangement

The main criteria for safe operation

- Reliability
- Availability
- Continuous versus intermittent operations

Personnel at the NCT facility

- Reactor operations staff
- NCT operations staff
- Medical staff

Resume

Neutron-capture therapy is a promising method in the treatment of severe forms of cancer. To implement it, it is required to create a specialized medical reactor facility, the purpose of which is to form a neutron beam to irradiate the patient. To this end, multipurpose research reactors can also be used, but a specialized installation has several advantages over them: achieving the required technical parameters, location directly in the clinic, limiting reactor failures and hence greater reliability. The disadvantages include the high cost of such installations.

Thank you for attention