
Конструктивная схема трехфазного асинхронного двигателя

Обмотки машин переменного тока

В статоре расположены три фазы сдвинутые на 120° электрических градусов каждая фаза на полюсном делении занимает $\frac{1}{3}$ часть.

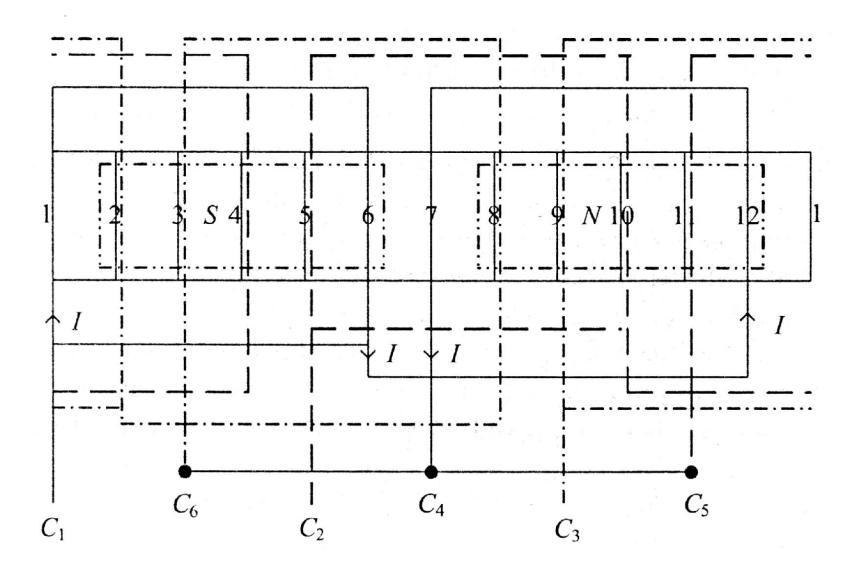
Обозначим:

 Z_1 – число пазов статора

2Р – число полюсов

Р – число пар полюсов

m₁ – число фаз


 $q = \frac{Z_1}{2P \cdot m_1}$ - число пазов на полюс и фазу, лежит в пределах 1 ÷ 9.

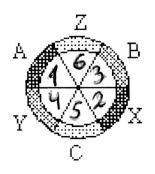
Число пазов равно

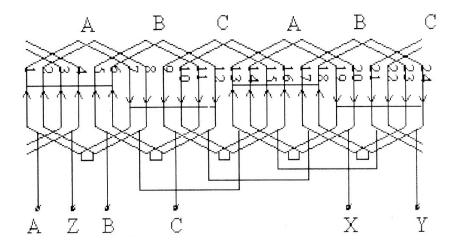
$$Z_1 = 2P \cdot m_1 \cdot q$$

Определяющим шагом обмотки называется расстояние от начала одной катушки до конца той же катушки. - 🎢 💃

Схема трехфазной однослойной двухполюсной статорной обмотки

Элементы обмоток переменного тока


Из чего состоит фаза: проводник \rightarrow виток \rightarrow катушка \rightarrow катушечная группа \rightarrow фаза. Два проводника составляют виток. Несколько витков составляют катушку, несколько катушек \rightarrow катушечную группу, несколько катушечных групп составляют фазу.

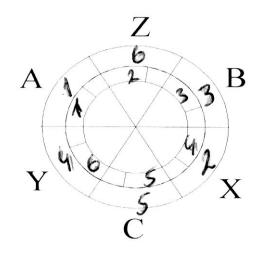

При однослойной обмотке — число катушечных групп в фазе = Р
При двухслойной обмотке — число катушечных групп в фазе = 2Р
Такое же соотношение максимально возможных параллельных ветвей.

С конструктивной стороны обмотки делятся на:

- 1) однослойные
- 2) двухслойные
- 1) Однослойные обмотки

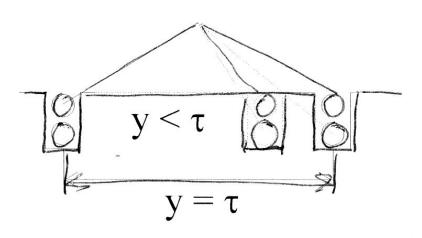
Пример выполнения однослойной обмотки,

Чередование фазных зон

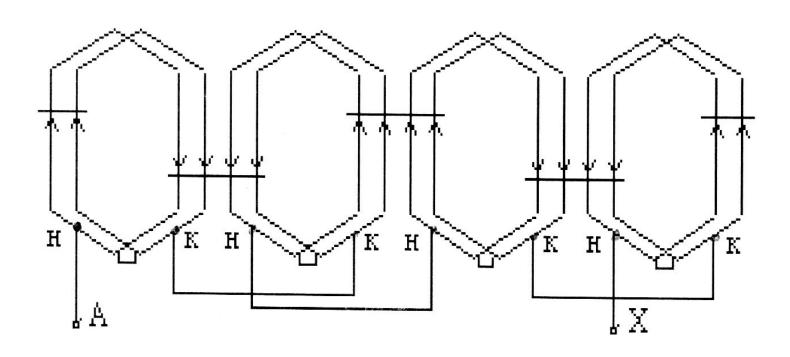

$$2P = 4$$

$$m_1 = 3$$

$$q = \frac{Z_1}{2P \cdot m_1} = \frac{24}{4 \cdot 3} = 2$$


$$y = \tau = \frac{Z_1}{2P} = \frac{24}{4} = 6 \quad (1 \div 7)$$

$$\alpha = \frac{360 \cdot P}{Z_1} = \frac{360 \cdot 2}{24} = 30^{\circ}$$


$$y = \frac{5}{6}\tau = \frac{5}{6} \cdot \frac{24}{4} = 5 \ (1 \div 6)$$

$$\alpha = 30^{\circ} \ q_1 = 2$$

$\mathcal{N}_{\underline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	19	20	21	22	23 74
B.C.	A	A	Z	Z	В	В	X	X	С	С	Y	Y	A	A	Z	В	В	X	X	С	С	YY
H.C.	A	Z	Z	В	В	X	X	С	С	Y	Y	A	A	Z	В	В	X	X	С	С	Y	YA

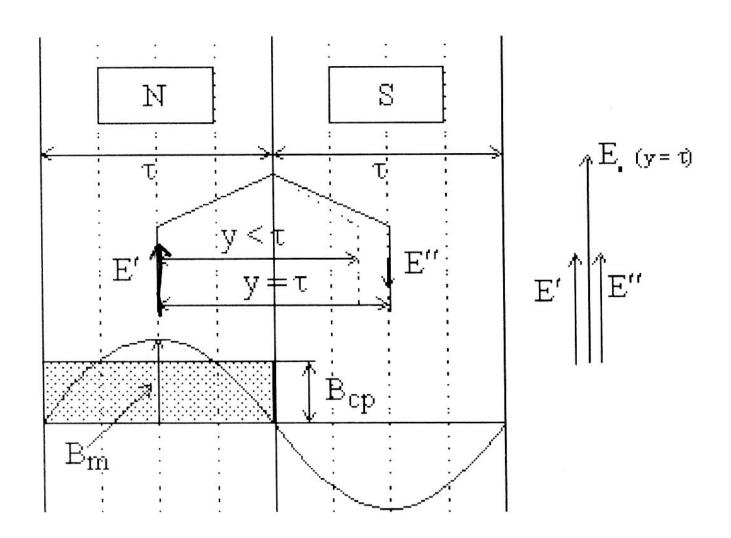
(2P = 4) ACB, ACB, ACB, ACB.

$$H - K - K - H - H - K - K - H (X)$$

Имеются обмотки с дробным q, например, в многоскоростных обмотках, когда в одних пазах укладываются две обмотки на разное число полюсов.

Дробное
$$q = b + \frac{c}{d}$$

Пример. $Z_1 = 72$ $2P_1 = 8$ $2P_2 = 10$ $m_1 = 3$


$$q_1 = \frac{Z_1}{2P_1 \cdot m_1} = \frac{72}{8 \cdot 3} = 3$$

$$q_2 = \frac{Z_1}{2P_2 \cdot m_1} = \frac{72}{10 \cdot 3} = 2\frac{12}{30} = 2\frac{2}{5}$$

 $q_2 \rightarrow$ число 5 означает, что в чередовании участвует пять катушечных групп — d; числитель c = 2, говорит о том, что катушечные группы имеют катушек на одну больше; b — остальные катушки группы имеют по две катушки, т.е. чередование катушечных групп будет следующее:

$$2 - 3 - 2 - 3 - 2 - q$$
 – дробное.

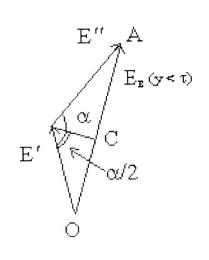
Электродвижущая сила (ЭДС) обмотки машин переменного тока

ЭДС проводника У Линейния скорост шат поля.

$$E_{np \max} = B_m \cdot l \cdot V . \quad B_m = \frac{\pi}{2} \cdot B_{cp} , \quad V = \frac{\pi D \cdot n_1}{60} \cdot \frac{P}{P} = \underbrace{\frac{\pi D}{2\tau}}_{2\tau} \cdot \underbrace{\frac{n_1 \cdot P}{60}}_{f} = 2\tau \cdot f$$

$$E_{np \max} = \frac{\pi}{2} \cdot \underbrace{B_{cp} \cdot l \cdot 2\tau}_{p} \cdot f = \pi \cdot \Phi \cdot \mathcal{F}$$

Действующее значение ЭДС проводника


$$E_{np} = \frac{\pi}{\sqrt{2}} \cdot \boldsymbol{\Phi} \cdot f = 2,22 \cdot \boldsymbol{\Phi} \cdot f$$

2. ЭДС витка с полным шагом

$$E_{\mathbf{G}_{\mathbf{Z}}(\mathbf{G}_{\mathbf{Z}})} = 4.44 \cdot \mathbf{\Phi} \cdot f$$

3. ЭДС витка с укороченным шагом

E" } FDC & wegunt myrx

$$E_{_{\theta_{(y=\tau)}}} = 2 \cdot OC = 2 \cdot E' \cdot Sin\frac{\alpha}{2} = 2 \cdot 2,22 \cdot \Phi \cdot f \cdot Sin\frac{\alpha}{2}$$

$$Sin\frac{\alpha}{2} = K_{y},$$

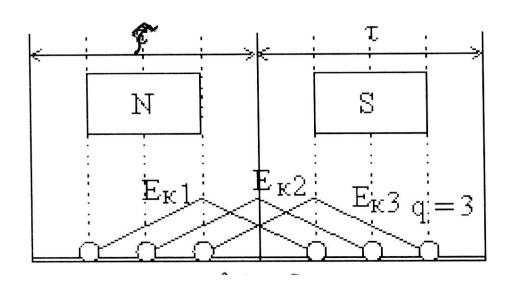
$$E'' \stackrel{A}{\longrightarrow} E_{\mathbf{g}}(\mathbf{y} < \tau) \qquad E_{\mathbf{g}}(\mathbf{y} < \tau) \qquad \mathbf{E} = 2 \cdot OC = 2 \cdot E' \cdot Sin\frac{\alpha}{2} = 2 \cdot 2,22 \cdot \Phi \cdot f \cdot Sin\frac{\alpha}{2}$$

$$Sin\frac{\alpha}{2} = K_y, \qquad \mathbf{f} - 180^\circ, \qquad \text{откуда } \alpha = \frac{180 \cdot y}{\tau}, \text{ тогда}$$

$$\mathbf{y} - \alpha, \qquad \mathbf{y} - \alpha, \qquad \mathbf{g} = \mathbf{g}$$

$$K_{y} = Sin \frac{y}{\tau} \cdot 90^{\circ}$$

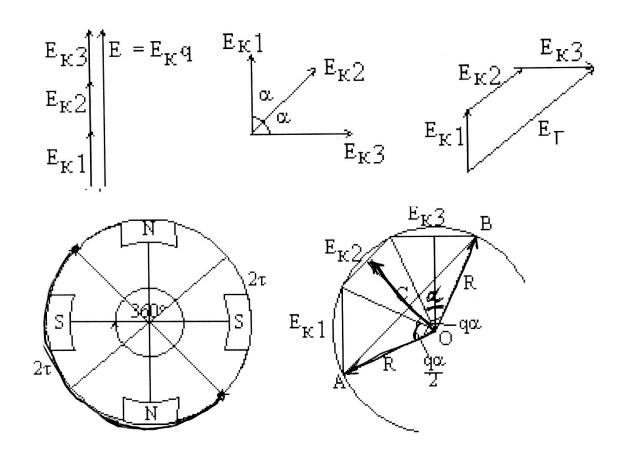
$$E_{B_{(y < au)}} = 4,44 \cdot \Phi \cdot f \cdot K_y$$
 , где Ку- коэффици-


укорочения

Определение ЭДС катушки

Витки катушки лежат в одних пазах, поэтому ЭДС катушки равна ЭДС одного витка на число витков в катушке.

$$E_k = 4,44 \cdot \boldsymbol{\Phi} \cdot f \cdot K_y \cdot W_k$$


Определение ЭДС катушечной группы,

$$\frac{E_{\it F}}{E_{\it k}q}$$
 = $K_{\it p}$. (Зная $K_{\it p}$, определим $E_{\it r}$). α = $\frac{360 \cdot P}{Z_{\it 1}}$, где $K_{\it p}$ - коэффициент

распределения

lpha - электрический угол сдвига ЭДС соседних пазов.

$$E_{\mathbf{r}} = 2 \cdot AC = 2R \cdot Sin \frac{q\alpha}{2}$$
 - ЭДС катушечной группы

$$\underline{\mathcal{G}}$$
ДС катушки $E_k = 2R \cdot Sin \frac{\alpha}{2}$, запишем отношение

$$\frac{E_{\Gamma}}{qE_k} = \frac{2R \cdot Sin\frac{q\alpha}{2}}{q \cdot 2R \cdot Sin\frac{\alpha}{2}} = K_p, \text{ тогда коэффициент распределения}$$

$$K_p = rac{Sinrac{qlpha}{2}}{q\cdot Sinrac{lpha}{2}}$$
 ; $E_{m{\Gamma}} = q\cdot E_k\cdot K_p$ - ЭДС катушечной группы.

Определение ЭДС фазы.

Фаза состоит из нескольких катушечных групп, все катушечные группы расположены в одинаковых магнитных условиях, поэтому ЭДС фазы будет равна ЭДС катушечной группы умноженной на число их в фазе.

Если обмотка однослойная, то число катушечных групп в фазе равно числу пар полюсов – P,

$$E_{dp} = E_T \cdot P = 4,44 \cdot f \cdot \Phi \cdot W_k \cdot K_y \cdot K_p \cdot q \cdot P$$

Если обмотка двухслойная, то число катушечных групп в фазе равно числу полюсов – 2P

$$E_{db}=E_{T}\cdot 2P=4,44\cdot f\cdot \Phi\cdot W_{k}\cdot K_{y}\cdot K_{p}\cdot q\cdot 2P$$
 , перепишем иначе

$$E_{\phi} = 4,44 \cdot f \underbrace{2P \cdot W_k \cdot q}_{W} \cdot \underbrace{K_y \cdot K_p}_{K_0} \cdot \boldsymbol{\Phi}$$

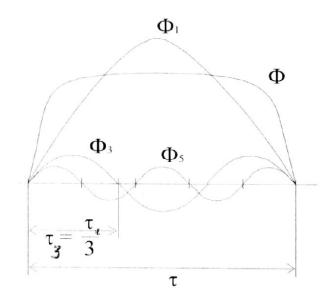
$$E_{\phi} = 4.44 \cdot f \cdot W \cdot \Phi \cdot K_0$$
, $K_0 = K_y \cdot K_p$

где W – число витков в фазе;

К₀ - обмоточный коэффициент;

Ф – магнитный поток в веберах;

Ф.Ку – максимально сцепленный поток с катушкой.


Это выражение ЭДС фазы для первой гармоники.

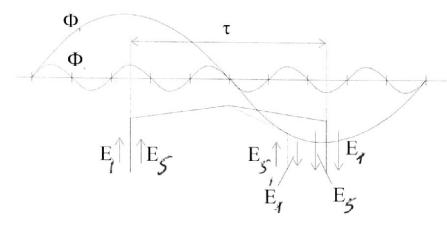
ЭДС от высших гармоник потока

ЭДС от потока у гармоники запишется

$$E_{v} = 4.44 \cdot f_{v} \cdot W \cdot \Phi_{v} \cdot K_{0} \cdot v$$

полюсное деление $au v = rac{ au_1}{v}$, а число полюсов $P_v = P \cdot v$.

1.
$$fv = \frac{Pv \cdot n_1}{60} = f_1v$$
 (для генератора)


2.
$$\Phi v = B_{cp} v l \tau v = \frac{2}{\pi} B_{\text{max}} v l \frac{\tau}{v}$$

3.
$$K_0 v = K_y v \cdot K_p v$$
. $K_y v = Sin \frac{y}{\tau v} 90^\circ = Sin \frac{y}{\tau} v 90^\circ$,

Если укорочение $\frac{\mathcal{Y}}{\tau} = 0.8$, то исчезнет пятая гармоника ЭДС

$$K_{y_5} = Sin0.8 \cdot 5 \cdot 90 = 0, \quad K_{0_5} = 0, \quad E_5 = 0$$

уменьшатся и 3 и 7 гармоники.

Пояснение, почему исчезает пятая гармоника ЭДС. Укорочение на $1/5\tau$ приводит к тому, что по контуру E_5 направлены встреч-

но и их сумма равна 0, рис. 96.

Укорочение шага приводит к исчезновению пятой гармоники, третья гармоника уменьшается на половину, отсюда видно, что