В – барометрическое давление

Р_и – избыточное давление

Р_а – абсолютное давление

$$P_{a} = P_{H} + B$$

Т_а – абсолютная температура, К

Параметры, описывающие свойства рабочего тела:

$$k = C_p/C_v$$
 $m = (k-1)/k = R/C_p$

Параметры, описывающие состояние рабочего тела:

$$P- \text{давление}; \ T- \text{температура}; \ C- \text{скорость};$$

$$V- \text{удельный объем}; \ \varrho- \text{плотность}; \ i- \text{энтальпия}; \ S- \text{энтропия};$$

$$P\times V=R\times T; \qquad \varrho=1/V;$$

Статические параметры движущегося потока:

$$P_{cr};$$
 $T_{cr};$ $Q_{cr};$ $V_{cr};$ $i_{cr};$ $S_{cr};$

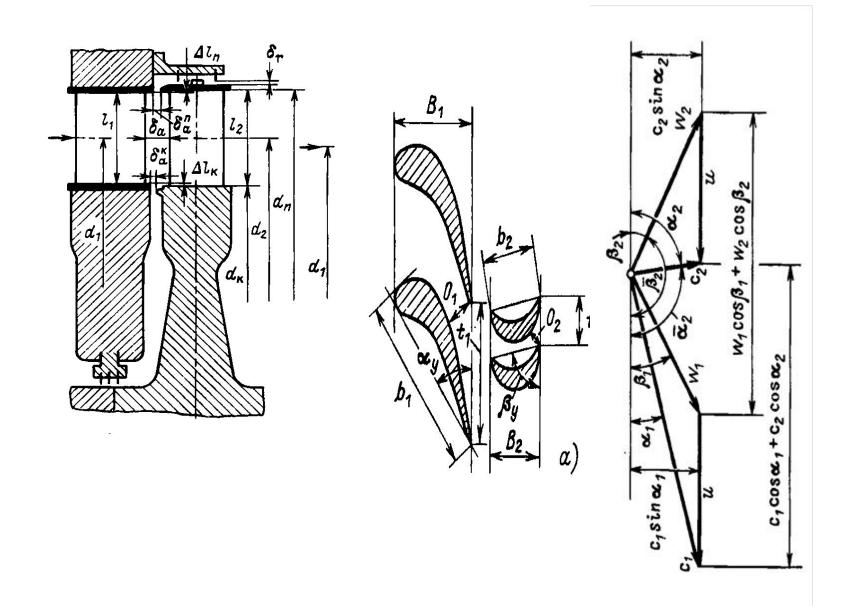
Полные параметры движущегося потока:

$$P^*; T^*; Q^*; V^*; i^*; S^*;$$

Кинетическая энергия единицы массы потока — $C^2/2$;

$$C^{2}/2 = i^{*} - i_{cT}; \qquad i^{*} = i_{cT} + C^{2}/2;$$

$$i^{*} - i_{cT} = C_{p} \times (T^{*} - T_{cT}); \qquad T^{*} = T_{cT} + (i^{*} - i_{cT})/C_{p} = T_{cT} + C^{2}/(2 \times C_{p});$$


$$T^{*}/T_{cT} = (P^{*}/P_{cT})^{m}; \qquad P^{*} = P_{cT} \times (T^{*}/T_{cT})^{1/m};$$

$$V^{*} = R \times T^{*}/P^{*}; \qquad Q^{*} = 1/V^{*}; \qquad S^{*} = S_{cT};$$

Полные параметры в относительном движении:

Кинетическая энергия единицы массы потока в относительном движении — $W^2/2$;

$$W^{2}/2 = i_{w} - i_{cr}; \qquad i_{w} = i_{cr} + W^{2}/2; \\ i_{w} - i_{cr} = C_{p} \times (T_{w} - T_{cr}); \qquad T_{w} = T_{cr} + (i_{w} - i_{cr})/C_{p} = T_{cr} + W^{2}/(2 \times C_{p}); \\ T_{w}/T_{cr} = (P_{w}/P_{cr})^{m}; \qquad P_{w} = P_{cr} \times (T_{w}/T_{cr})^{1/m}; \\ V_{w} = R \times T_{w}/P_{w}; \qquad Q_{w} = 1/V_{w}; \qquad S_{w} = S_{cr};$$

 $F_{_{\Gamma}}$ – площадь горла;

$$F_{\Gamma} = O \times I$$

 $\boldsymbol{F}_{_{\kappa}}$ – кольцевая площадь расчетного сечения;

$$F_{K} = \pi \times (d_{II}^{2} - d_{K}^{2})$$

 $\alpha_{_{1}}$ – угол выхода потока из соплового аппарата;

$$\alpha_1 = \arcsin(F_{r1}/F_{\kappa 1})$$

 β_2 – угол выхода потока из рабочего колеса;

$$\beta_2 = \arcsin(F_{r2}/F_{\kappa 2})$$

Расчет параметров производится только в отдельных сечениях

Параметры свойств рабочего тела принимаются постоянными, средними для рассчитываемых процессов

Течение в каналах считается адиабатным

Наличие трения в каналах учитывается скоростными коэффициентами

Скоростные коэффициенты определяются исходя из параметров лопаточного венца и режимов его обтекания

Уравнение сплошности $G = C \times F \times \varrho_{cr}$;

$$\begin{split} C_1 &= \sqrt{(C_{1a}^{\ 2} + C_{1u}^{\ 2})}; \ W_{1a} = C_{1a}; \ W_{1u} = C_{1u} - U; \ W_1 = \sqrt{(W_{1a}^{\ 2} + W_{1u}^{\ 2})}; \qquad \Delta i_{ca} = C_1^{\ 2}/2; \\ T_0^{\ *} &= T_{cr1} + C_1^{\ 2}/(2 \times C_p); \qquad T_{W1} = T_{cr1} + W_1^{\ 2}/(2 \times C_p); \\ W_2 &= \sqrt{(W_{2a}^{\ 2} + W_{2u}^{\ 2})}; \ W_{2a} = C_{2a}; \quad C_{2u} = W_{2u} - U; \ C_2 = \sqrt{(C_{2a}^{\ 2} + C_{2u}^{\ 2})}; \qquad \Delta i_{p\kappa} = W_2^{\ 2}/2; \\ A_{p\kappa} &= U \times (C_{1u} - C_{2u}); \\ T_{W2} &= T_{W1} - A_{p\kappa}/C_p; \qquad T_{cr2} = T_{W2} - W_2^{\ 2}/(2 \times C_p); \qquad T_2^{\ *} = T_{cr2} + C_2^{\ 2}/(2 \times C_p); \end{split}$$

$$I_{W2} - I_{W1} - A_{pk}/C_p$$
, $I_{cr2} - I_{W2} - W_2/(2 \times C_p)$, $I_2 - I_{cr2} + C_2/(2 \times C_p)$, $N = G \times A_{pk}$

$$C_{1\pi} = C_{1\tau} \times \phi;$$
 $W_{2\pi} = W_{2\tau} \times \psi;$

 T_3 – полная температура на входе в турбину;

Р₃ – полное давление на входе в турбину;

 T_4 – полная температура на выходе из турбины;

 P_4 – полное давление на выходе из турбины;

G – расход рабочего тела;

n – частота вращения ротора турбины;

N – мощность турбины;

 $\pi_{_{\rm T}}$ – степень понижения давления в турбине; $\pi_{_{\rm T}} = P_3/P_4$;

 Π_a – адиабатический КПД турбины;

 ΔT_a – адиабатический перепад температур в турбине;

 $\Delta T_{_{\rm I\!I}}$ – действительный перепад температур в турбине; $\Delta T_{_{\rm I\!I}} = \Delta T_{_{\rm I\!I}} \times \Pi_{_{\rm I\!I}};$

. - приведенный расход (расходная характеристика турбины)

$$\overline{G}_{,=} G \times \sqrt{T_3/P_3}$$
;

$$\Delta T_{a} = T_{3} \times (1 - \pi_{T}^{-m});$$

$$\Delta T_{d} = T_{3} \times (1 - \pi_{T}^{-m}) \times \Pi_{a};$$

$$N = G \times \Delta T_{d} \times C_{p}$$

$$T_4 = T_3 - \Delta T_{_{\mathcal{I}}};$$

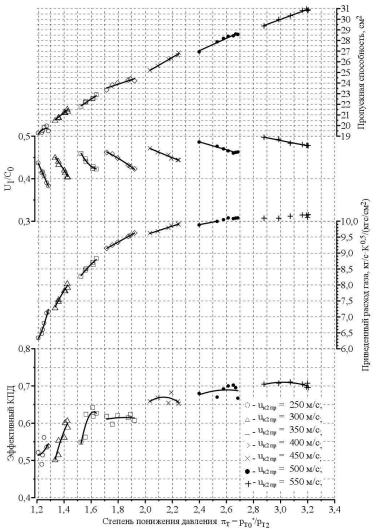


Рисунок 2 - Характеристики турбины TKP 180.01.02-01-02 № 111111 $F_T=0.005~\text{M}^2, d_{\text{c,T}}=74.0~\text{MM}, d_{\text{rp3}}=100.0~\text{MM}, d_{\text{rp4}}=150.0~\text{MM}, \\ d_{\text{T0}}=38.2~\text{MM}, d_{\text{T1}}=120.0~\text{MM}, d_{\text{T2}}=105.2~\text{MM}, z_{\text{r}}=10.0, b_{\text{T}}=0.0~\text{MM}, b_{\text{T1}}=0.0~\text{MM}, \\ F_{\text{T0}}=0.0~\text{cm}^2, ~\Delta_{\text{K.T}}=0.0~\text{MM} \\ \text{Шифр ротора: } 1801.1118.082~\text{CE}. Тип контура: открытый }$

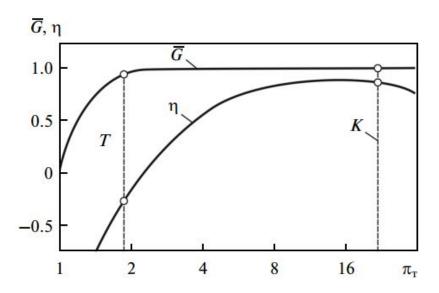
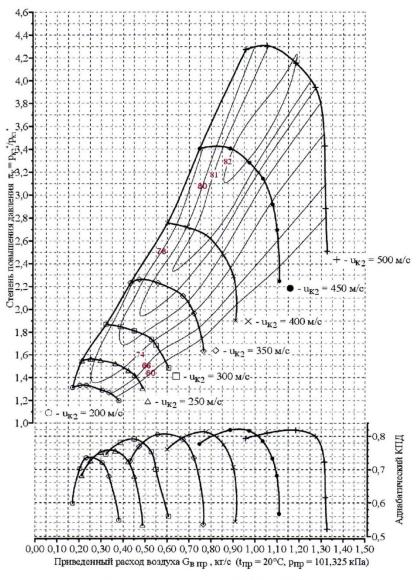


Рис. 2. Характеристика ЧНД

- T_1 полная температура на входе в компрессоре;
- P_{1} полное давление на входе в компрессоре;
- T_2 полная температура на выходе из компрессора;
- Р₂ полное давление на выходе из компрессора;
- G расход рабочего тела;
- n частота вращения ротора компрессора;
- N мощность компрессора;
- $\pi_{_{\kappa}}$ степень повышения давления в компрессоре;
 - $\pi_{\kappa} = P_2 / P_1$;
- Π_a адиабатический КПД компрессора;
- ΔT_{a} адиабатический перепад температур в компрессоре;
- $\Delta T_{_{\pi}}$ действительный перепад температур в компрессоре; $\Delta T_{_{II}} = \Delta T_{_{a}} / \Pi_{_{a}};$


 G_{np} - приведенный расход;

$$\Delta T_{a} = T_{1} \times (\pi_{\kappa}^{m} - 1);$$

$$\Delta T_{\mu} = T_{1} \times (\pi_{\kappa}^{m} - 1)/\Pi_{a};$$

$$T_{2} = T_{1} + \Delta T_{\mu};$$

$$N = G \times \Delta T_{\mu} \times C_{p}$$

Характеристики компрессора ТКР 180.01.02-01(-02) $\rm d_{x1}\!=\!109.3~\rm mm,\,d_{x2}\!=\!176.0~\rm mm$

Т₂ – полная температура на входе в камеру сгорания;

Р₂ – полное давление на входе в камеру сгорания;

Т₃ – полная температура на выходе из камеры сгорания;

Р₃ – полное давление на выходе из камеры сгорания;

G – расход рабочего тела в камере сгорания;

 $G_{_{\scriptscriptstyle \mathrm{T}}}$ – расход топлива;

Н – теплотворная способность топлива;

 $\prod_{\kappa c}$ – коэффициент полноты сгорания;

 $v_{_{\rm KC}}$ – коэффициент восстановления полного давления в камере сгорания;

$$\Delta i_{kc} = f(G,G_{T}, H_{U}, \Pi_{kc});$$

$$P_3 = P_2 \times v_{KC};$$

$$T_3 = T_2 + \Delta i_{\kappa c} / C_p;$$

- T_{1r} полная температура на входе в ТА горячего теплоносителя;
- P_{1r} полное давление на входе в ТА горячего теплоносителя;
- T_{2r} полная температура на выходе из ТА горячего теплоносителя;
- P_{2r} полное давление на выходе из ТА горячего теплоносителя;
- T_{1x} полная температура на входе в ТА холодного теплоносителя;
- P_{1x} полное давление на входе в TA холодного теплоносителя;
- T_{2x} полная температура на выходе из ТА холодного теплоносителя;
- P_{2x} полное давление на выходе из ТА холодного теплоносителя;
- $G_{_{\Gamma}}$ расход горячего теплоносителя;
- C_{pr} теплоемкость горячего теплоносителя;
- $G_{_{x}}$ расход холодного теплоносителя;

 $C_{DX}^{}$ – теплоемкость холодного теплоносителя;

Ө – эффективность ТА (степень рекуперации);

 $v_{_{\Gamma}}$ – коэффициент восстановления полного давления горячего теплоносителя;

 $v_{_{\rm x}}$ – коэффициент восстановления полного давления холодного теплоносителя;

$$P_{2\Gamma} = P_{1\Gamma} \times v_{\Gamma};$$

$$P_{2x} = P_{1x} \times v_x;$$

Если
$$G_{\Gamma} \times C_{p\Gamma} > G_{\chi} \times C_{p\chi}$$

$$T_{2x} = T_{1x} + (T_{1r} - T_{1x}) \times \Theta;$$

$$T_{2r} = T_{1r} - (T_{1r} - T_{1x}) \times (G_x \times C_{px})/(G_r \times C_{pr});$$

Если
$$G_{_{\Gamma}} \times C_{_{p\Gamma}} < G_{_{x}} \times C_{_{px}}$$

$$T_{2r} = T_{1r} - (T_{1r} - T_{1x}) \times \Theta;$$

$$T_{2x} = T_{1x} + (T_{1r} - T_{1x}) \times (G_r \times C_{pr})/(G_x \times C_{px});$$