УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ОБЩИЙ И АНАЛИТИЧЕСКОЙ ХИМИИ

МАГИСТРАНТ

АРЫСТАНОВА С.К.

Циклические формали глицерина: синтез, изучение строения, превращения

научные руководители: д.х.н., проф. Султанова Р.М. к.х.н., н.с. Байкова И.П.

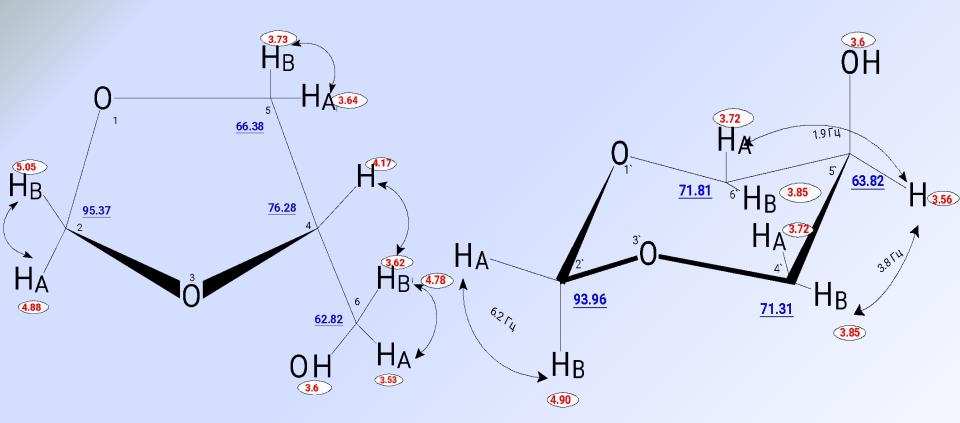
ЦЕЛЬ

Изучение конденсации глицерина и параформа в присутствии кислотных катализаторов с применением спектроскопии ЯМР для создания удобных методов разделения пяти и шести членных циклических формалей глицерина.

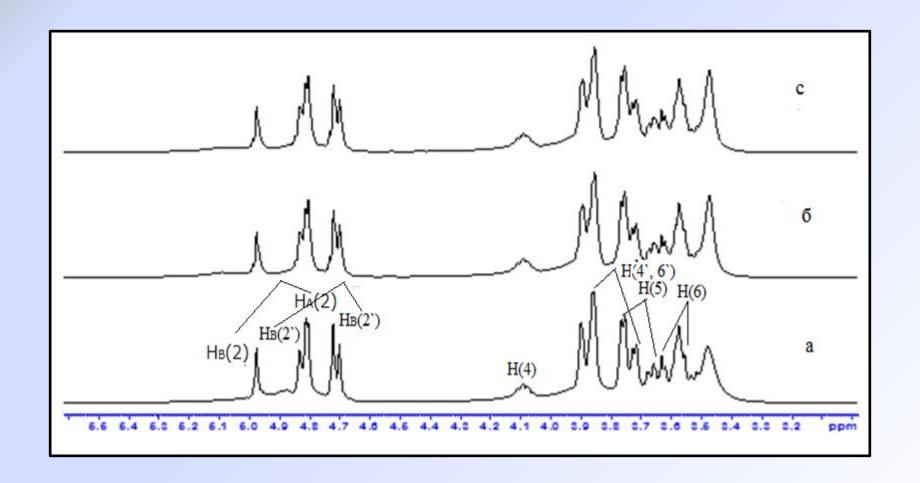
ЗАДАЧИ:

- 1 Синтез циклических формалей глицерина в присутствии кислотных катализаторов и проведены их химических трансформаций (Оалкилирования, хлорирования).
- 2 Установление структуры полученных соединении методом одномерной и двумерной корреляционной спектроскопии ЯМР.
- 3 Изучение влияния температуры, природы растворителя, рН-среды на смещение динамического равновесия изомерной смеси 5-ти и 6-ти циклических формалей глицерина.

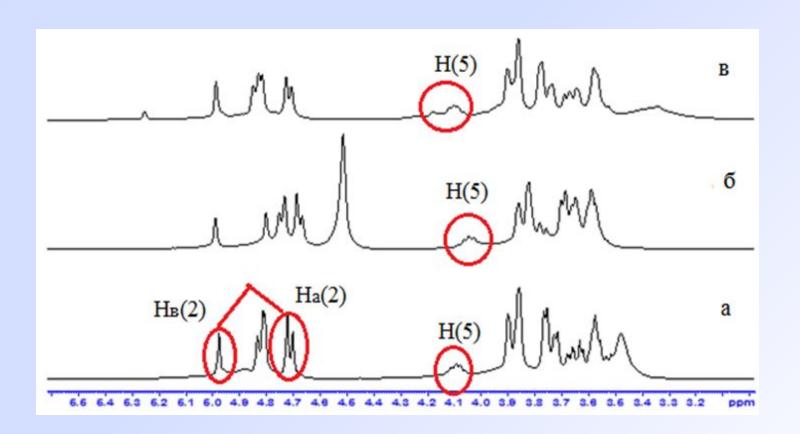
Синтез циклических формалей глицерина

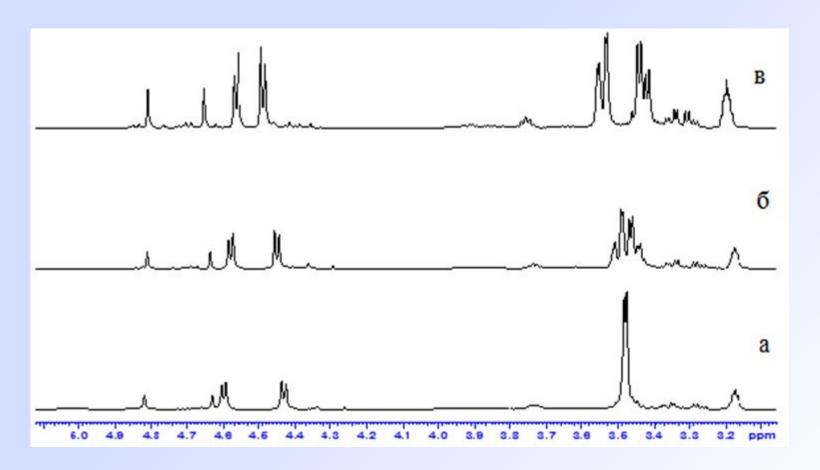

Реагенты и условия: а) HO(CH₂O)nH (n \approx 8—100), толуол, 100 °C, 6 ч;

Кат.	Выход* 1a+1б, (%)	Соотношение **1a:1б	
КУ-2	95	25	75
H2SO4	90	31	69
ТПСК	94	29	71

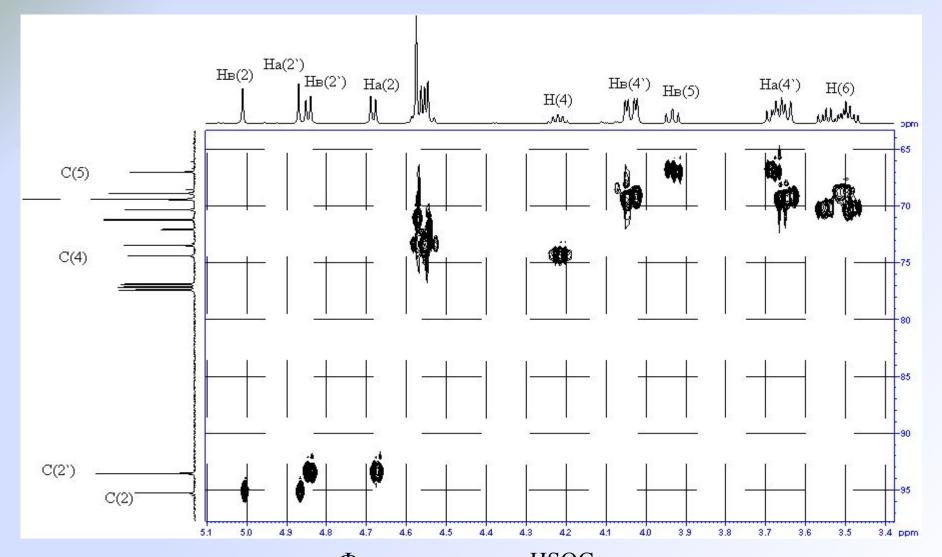

^{*}Практический выход

** соотношение изомеров определено по спектрам ЯМР ¹Н


Отнесение сигналов 4-гидроксиметил-1,3-диоксолана 1а и 5-гидрокси-1,3-диоксана 1б


Фрагмент спектра ЯМР 1 Н смеси 4-гидроксиметил-1,3-диоксолана $\mathbf{1a}$ и 5-гидрокси-1,3-диоксана $\mathbf{16}$ во времени : а) через 1 час; б) через сутки; в) через неделю (CDCl₃, 25 C°, 300 МГц)

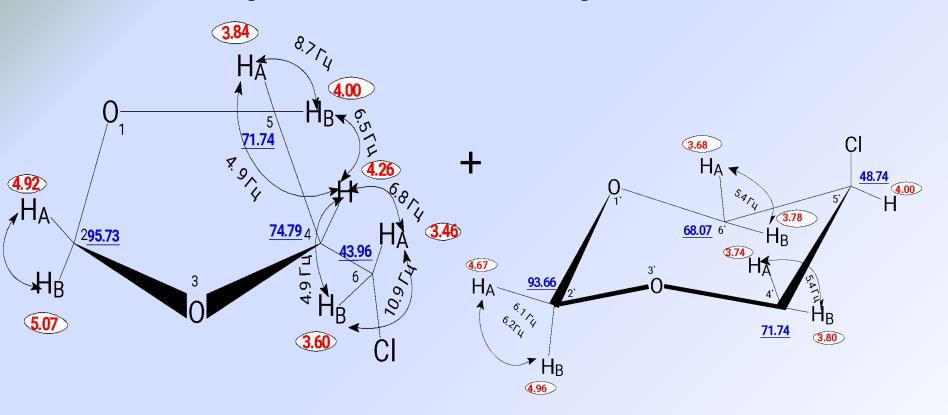
Фрагмент спектра ЯМР 1 Н смеси 4-гидроксиметил-1,3-диоксолана **1а** и 5-гидрокси-1,3-диоксана **1б** в различных растворителях: а) CDCl $_3$; б) C_6D_6 ; в) CDCl $_3$ +H $_2$ SO $_4$



Фрагмент спектра ЯМР ¹Н смеси 4-гидроксиметил-1,3-диоксолана **1а** и 5-гидрокси-1,3-диоксана **16** при разных температурах: а) 20°С, б) 40°С, в) 80°С (толуол-d8, 500МГц)

Синтез 4-[(бензилокси)метил]-1,3-диоксолана и 5-(бензилокси)-1,3-диоксана

Реагенты и условия: BnCl, 50%-ный p-p NaOH, Q+Cl -, толуол, 70 °C, 1 ч;



Фрагмент спектра HSQC 4-[(бензилокси)метил]-1,3-диоксолана и 5-(бензилокси)-1,3-диоксана

Синтез 4-хлорметил-1,3-диоксолана и 5-хлор-1,3-диоксана

Реагенты и условия: SOCl₂, пиридин, 55-60 °C, 6 ч

Отнесение сигналов замещенных гетероциклов смеси 4-хлорметил-1,3-диоксолана и 5-хлор-1,3-диоксана

Выводы

- 1 Синтезированы циклические формали глицерина и проведены их химические трансформации (О-алкилирования, хлорирования)
- 2 Методом одномерной и двумерной корреляционной спектроскопии ЯМР установлены структуры полученных соединении. Найдены все параметры спектров ЯМР ¹Н и ¹³С и сделаны полные отнесения химических сдвигов, величин КССВ к соответствующим углеродным атомам и протонам.
- 3 Показано, что динамическое равновесие 5-ти и 6-ти циклических формалей глицерина не зависит от растворителя, температуры, pH среды.