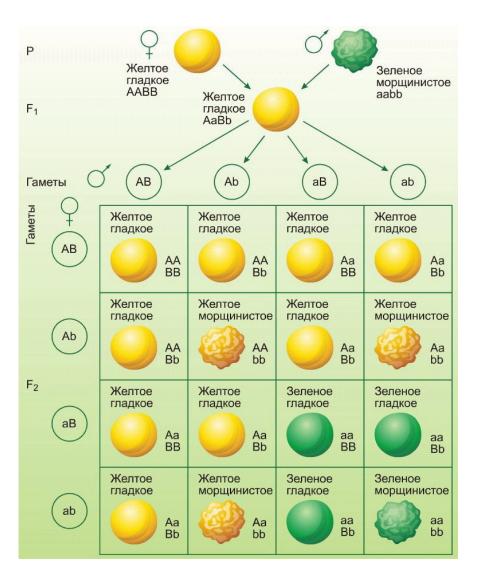
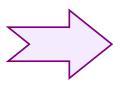


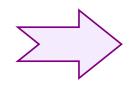
Генетика — наука, изучающая закономерности наследственности и изменчивости живых организмов.

Наследственность — это свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение.

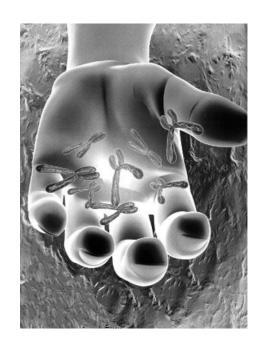

Изменчивость — свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Результаты экспериментов Менделя по наследованию семи пар альтернативных признаков у гороха

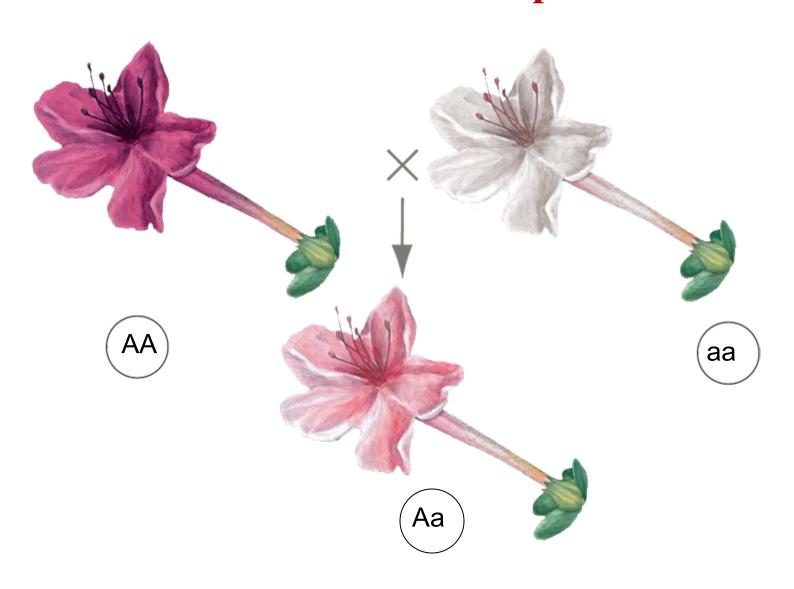

Признак	Родительские растения		Гибриды <i>F</i> ₂		Отношение
	Доминантный	Рецессивный	Доминантный	Рецессивный	Отношение
1. Высота	Высокие	Низкие	787	277	2,84:1
стебля 2. Семена	Гладкие	Морщинистые	5474	1850	2,96:1
3. Окраска семян	Желтые	Зеленые	6022	2001	3,01:1
4. Форма плодов	Плоские	Выпуклые с перетяжками	882	299	2,95:1
5. Окраска плодов	Зеленые	Желтые	428	152	2,82:1
6. Положение цветков	Пазушные	Верхушечные	651	207	3,14:1
7. Окраска	Красные	Белые	705	224	3,15:1
цветков		Всего:	14949	5010	2,98:1

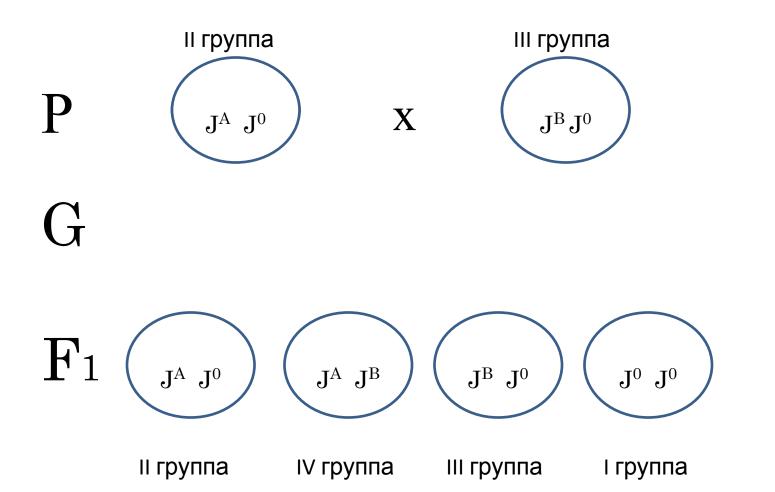

Теория гена

- В 1909 году датский генетик <u>В.Л. Иогансен</u> заменил термин «фактор» термином «ген».
- В 1910-1920 годах американский генетик <u>Т.Х. Морган</u> полностью обосновал и разработал хромосомную теорию наследственности, создав *теорию гена*:
 - гены находятся в хромосоме, каждый ген занимает определенное место <u>локус</u>;
 - гены располагаются в хромосоме в линейном порядке;
 - ген неделимая единица рекомбинации (ген наименьший участок хромосомы, который может участвовать в <u>кроссинговере</u>);
 - ген неделимая единица <u>мутации</u>, то есть наименьший участок хромосомы, способный претерпеть мутацию;
 - ген единица функции, то есть наименьший участок хромосомы, определяющий синтеодной белковой цепи.
- В результате более поздних исследований было установлено, что ген дробим и не является неделимой единицей мутации и рекомбинации, так как кроссинговер может происходить внутри одного гена.
- Итак, ген это участок молекулы геномной нуклеиновой кислоты, характеризующийся специфичной для него последовательностью нуклеотидов, представляющий собой единицу функции, отличной от функции других генов, и способный изменяться путем мутирования.

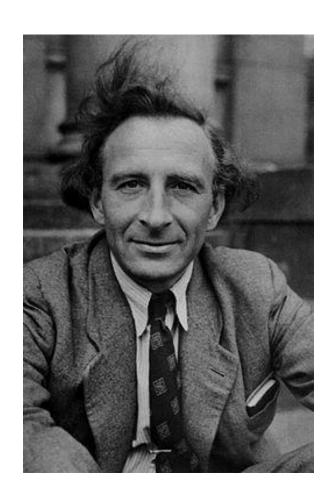

ген


белок 🔀


признак

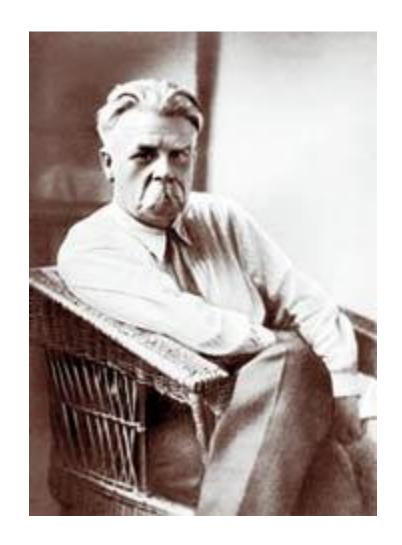


Элементарные единицы наследственности — гены — представляют собой участки ДНК хромосом.



Промежуточное наследование при неполном доминировании

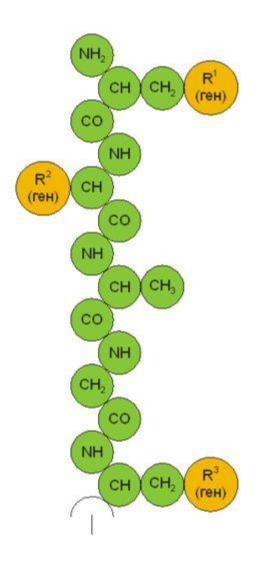
Примером кодоминирования служит IV группа крови человека в системе ABO: генотип $-J^A$, J^B , фенотип - AB, т.е. у людей с IV группой крови в эритроцитах синтезируется и антиген A (по программе гена J^A), и антиген B (по программе гена J^B).


Тимофеев-Ресовский Николай Владимирович • Термины «экспрессивность» и «пенетрантность» введены в 1927 г. Н.В. Тимофеевым-Ресовским. Обе закономерности необходимо иметь в виду при изучении наследственности у человека. • Диапазон изменчивости, в пределах, которой в зависимости от условий среды один и тот же генотип способен давать различные фенотипы, называется нормой реакции.

• В ряде случаев у гена, в зависимости от всего генотипа и внешних условий, возможна различная полнота фенотипического проявления – от полного отсутствия, контролируемого геном признака до полной его выраженности. Степень фенотипического проявления признака в зависимости от взаимодействия гена с генотипической средой и условиями среды, называется **экспрессивностью**.

• В процессе онтогенеза не все гены реализуются в признак. Некоторые из них оказываются блокированными другими неаллельными генами, или проявлению признаков препятствуют неблагоприятные внешние условия. Пробиваемость гена в признак называется пенетрантностью. Пенетрантность выражается в процентах числа особей, несущих признак, к общему числу носителей гена, т.е. это количественный показатель.

• Если мутантный ген проявляется у всех особей, пенетрантность полная и равна 100%. В остальных случаях о неполной пенетрантности указывает процент особей, проявляющих ген. Например, наследуемость групп крови у человека имеет 100% пенетрантность, эпилепсия – 67%, сахарный диабет – 65%, врожденный вывих бедра – 20%.


Кольцов Николай Константинович

Взгляды Н. Кольцова на биохимическую структуру гена

• <u>Н. К. Кольцов</u> выдвинул в 1927 концепцию о том, что хромосома с генами представляет одну гигантскую органическую молекулу и что воспроизведение этой наследственной молекулы осуществляется матричным путем. То и другое было позже подтверждено, когда генетические процессы начали изучать на молекулярном уровне (правда оказалось, что генетическим материалом служит не белок, как считал

Модель белковой хромосомы, предложенная Н.К. Кольцовым (1927 г.)

Идея матричного принципа

Кольцову принадлежит главная идея XX века в молекулярной биологии – идея матричного происхождения биологических молекул.

В 1927 г. Кольцов предположил, что наследственные «тексты» копируются с использованием матриц. Матричное воспроизведение «текста» - еще одно озарение Кольцова.

"...признаки, передаваемые по наследству, определются линейным расположеним мономеров в полимерных молекулах." (Кольцов думал, что это последовательность аминокислот в полипептидах). По его мнению способность молекул каких-то белков к конвариантной редупликации лежит в основе наследственностилд