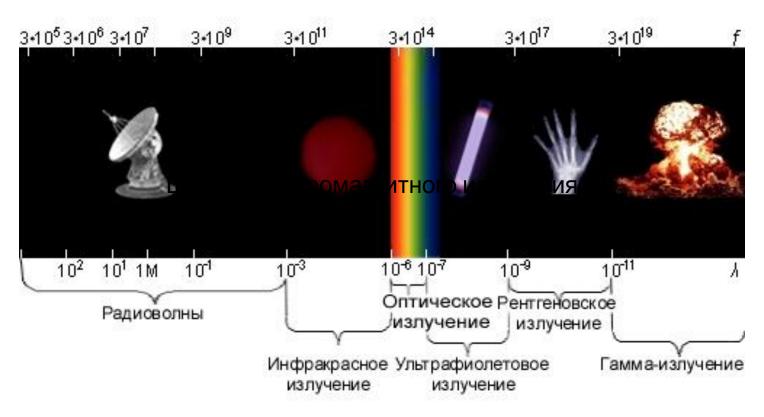
Радиоприемные устройства


Кафедра РПВЭС – к. 441 Лаборатория – к. 445 Лекции Лабораторные работы Курсовой проект Экзамен

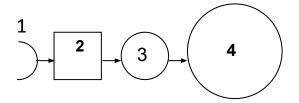
Лектор: ст. преподаватель Павлова Галина Геннадьевна

Основная литература:

- 1. Радиоприемные устройства: Учебник для вузов / Н.Н.Фомин, Н. Н.Буга, О.О.Головин и др.; Под ред. Н.Н.Фомина. М.: Горячая линия Телеком, 2007.
- 2. М.А.Кузнецов, Р.С.Сенина. Радиоприемники АМ, ОМ, ЧМ сигналов. Пособие по проектированию. Изд. 7-е, Изд-во «Линк». СПб, 2006 и более новые.
- 3. Методические указания к лабораторным работам по курсу Радиоприемные устройства / В.В. Гринев, М.А.Кузнецов, В.М. Устименко / СПбГУТ. СПб, 2012.

Введение

Шкала электромагнитного излучения


Радиосвязь – это вид информационной связи в человеческом обществе, понимаемой в широком смысле как обмен сообщениями.

Под информацией понимается любая совокупность всевозможных сведений, передаваемых письменно или устно, непосредственно или

с помощью вспомогательных средств.

- 1 источник сообщения,
- 2 преобразователь сообщения в сигнал и цепи связи этого преобразователя с радиооборудованием,
- 3 радиопередающее устройство,
- 4 пространство распространения радиоволн,
- 5 радиоприемное устройство,
- 6 цепи связи радиоприемного устройства с последующими цепями и устройствами и преобразователь сигнала в сообщение,
- 7 получатель сообщения

- 1- антенно-фидерное устройство
- 2 радиоприемное устройство,
- 3 цепи связи радиоприемного устройства с последующими цепями и устройствами и преобразователь сигнала в сообщение,
- 4 получатель сообщения (ЗВУКОВОСПРОИЗВОДЯЩЕЕ УСТРОЙСТВО, ДИСПЛЕЙ, ПРОЦЕССОР, УСТРОЙСТВО АВТОМАТИКИ)
 Функции РПрУ:

Выделить информацию, заложенную в ВЧ колебании (детектор или демодулятор, декодер)

Выделить сигнал из смеси с помехами (система фильтров)

Усилить сигнал до нужного уровня (система усилителей)

Радиоприемное устройство как <u>под</u>система в сложной радиотехнической <u>системе</u> описывается совокупностями внешних

и внутренних параметров.

Внешние параметры характеризуют <u>взаимодействие устройства с другими элементами радиотехнической системы</u>

<u>и со средой</u>.

Внутренние параметры <u>характеризуют структуру</u>, функционирование, динамические и конструктивные связи блоков устройства между собой.

Внешними параметрами являются:

диапазон частот,

вид принимаемых сигналов,

чувствительность,

восприимчивость к помехам,

интенсивность собственных нежелательных излучений, селективность,

помехоустойчивость,

верность воспроизведения сообщений,

точность установки и поддержания частоты настройки,

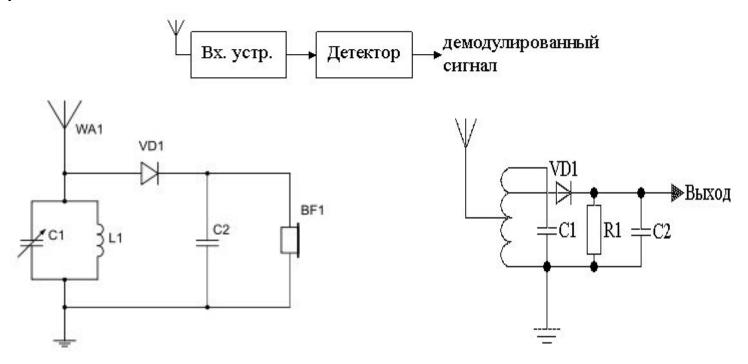
мощность и форма выходных сигналов,

конструктивность,

эксплуатационные характеристики (устойчивость показателей, эргономичность, надежность, ремонтопригодность,

РПУ

различают:


	уазничают:	8/.		
A.	По основному назначению	ПрофессиональныеБытовые	55_	
Б.	По виду систем радиовещания, радиосвязи, радиотехнических систем	 Звукового вещания Телевизионного вещания 	 Магистральной КВ связи Радиорелейных систем связи Тропосферных систем связи Спутниковых систем связи Систем подвижной связи 	 Радионавигационных систем Радиолокационных систем
В.	По характеру принимаемых сигналов	 Приемники аналоговых сигналов Приемники цифровых сигналов 		
Γ.	По виду модуляции принимаемых сигналов	■ AM ■ ЧМ ■ OM	 AT (AM) ЧТ (ЧМ) 2ФМ 4ФМ 8ФМ 16АФМ (16КАМ 64АФМ (64КАМ 	26
Д.	По диапазону принимаемых частот (длин волн)	дв, св, квукв	СВЧОптического диа	лазона

РПУ

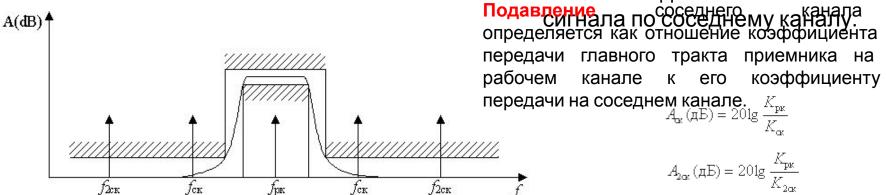
п	различают:				
E.	По месту установки	 Стационарные 			
		■ Автомобильные			
		■ Судовые			
		• Самолетные			
		• Переносные			
ж.	По виду электропитания	■ Сеть 220 В			
		 Бортовая сеть 			
		 Аккумулятор 			
		 Батарея 			
3.	По элементной базе	■ На ИМС			
		 На дискретных п/п приборах 			
		 На радиолампах 			
И.	По методу построения системы управления	 С микропроцессорной системой управления 			
		 Без микропроцессорной системы управления 			
К.	По способу построения главного тракта приема	■ Детекторные приемники			
		■ Приемники прямого усиления			
		• Супергетеродины			
		■ Приемники с прямым преобразованием			
		 Приемники с цифровой обработкой радиосигнала 			

Структурные схемы приемников

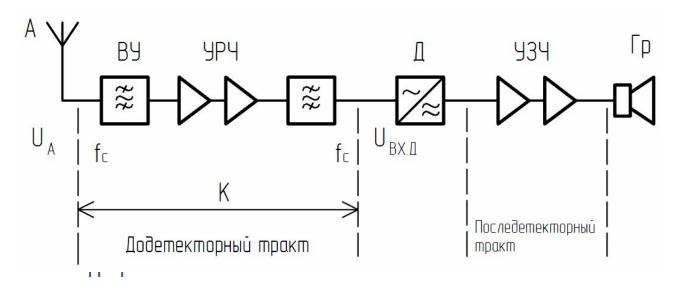
1. Детекторные приёмники: с усилителем низкой частоты (УНЧ), без УНЧ

Достоинства детекторного приёмника—

- 1. он не требует источника питания,
- 2. очень дешев,
- 3. может быть собран из подручных средств.


Недостатки: малая <u>чувствительность</u> приемника, малая <u>избирательность по</u> частоте

Чувствительность определяется как отношение мощности на входе приемника к уровню мощности 1 мВт и выражается в логарифмическом масштабе в дБм. $S = 10 \lg \frac{P_{A\!\!I\!\!I}}{1 - P_{-}}$


Предельная чувствительность приемника характеризуется коэффициентом шума N_0 , равным отношению мощности шумов, создаваемых на выходе линейной части приемника эквивалентом антенны (при комнатной температуре T_0 = 290 K) и линейной частью, к мощности шумов, создаваемых только эквивалентом антенны $M_{AT} = N_0 k T_0 T_{\infty}$

где $k = 1,38 \bullet 10^{-23}$ Дж/град — постоянная Больцмана; $\Pi_{_{\rm III}}$ — шумовая полоса линейной части приемника, $\Gamma_{_{\rm AII}}$ — мощность сигнала, Вт.

Избирательность по соседнему каналу — это способность приемника принимать попезный сигнал на заланной частоте канала с заданной

2. Радиоприёмник прямого усиления (герадеаус)

Входная цепь ВЦ (после выхода антенны) и усилитель поступающего из антенны радиосигнала, так называемый усилитель радиочастоты УРЧ, образуют тракт радиочастоты ТРЧ (додетекторный тракт).

Входная цепь обеспечивает предварительную *частотную селекцию* до первого каскада УРЧ, а сам УРЧ – основную селекцию и додетекторное усиление сигналов сигналов и помех. Частотная селекция –это одно из основных средств помехозащиты от преднамеренных активных и пассивных помех.

Полоса пропускания Π колебательного контура с добротностью Q связана с его резонансной частотой f_0 = f_c $\Pi = \frac{f_c}{Q}$ соотношением :

1. Проблема обеспечения необходимого усиления додетекторного тракта

Какое усиление требуется?

Уровень сигнала, поступающего из антенны, (U_A) очень мал (единицы или доли микровольт)

 $K_{ ext{треб}} \ge rac{U_{ ext{BX.Д}}}{U_{ ext{A}}}$

Для нормальной работы детектора на его вход необходимо подать сигнал с напряжением ($U_{\rm BX, I\!\!\! I}$) несколько десятых долей вольта

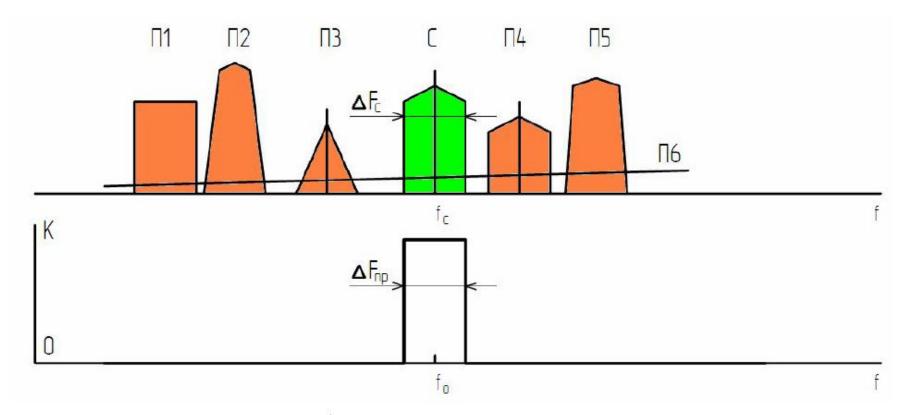
Пример: $U_{\text{BX},\text{Д}}$ =0.5 В, U_{A} =0.5 мкВ

$$K_{\text{треб}} \ge \frac{0.5}{0.5 \cdot 10^6} = 10^6$$
 или $K_{\text{треб дЕ}} \ge 20 \cdot \log(10^6) = 120 \, \text{дБ}$

Предположим, что усиление одного каскада K_{KACK} =14 дБ. Сколько надо каскадов?

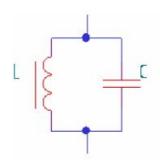
$$K_{\rm дБ} = \sum_N K_{\rm KACK}$$
 N =9 (14 х 9 =126 дБ). Необходимо учесть потери в фильтрах

Вывод: Усилительный тракт приемника - сложная многокаскадная структура


Из-за паразитных обратных связей построение усилительной структуры тем сложнее, чем выше частота усиливаемого сигнала (fc)

При росте частоты из-за опасности самовозбуждения приходится ограничивать усиление каскада и увеличивать число каскадов

2. Проблема обеспечения требуемой избирательности


Какую частотную характеристику додетекторного тракта желательно иметь?


- $f_0 = f_c$ $\Delta F_{\pi p} = \Delta F_c$
- АЧХ додетекторного тракта должна быть близкой к прямоугольной

Требуемая АЧХ додетекторного тракта

Требуемую AЧX реализуют с помощью полосно-пропускающих фильтров, основу которых составляют колебательные контура (резонаторы). Резонаторы могут быть LC, кварцевые, на поверхностно-акустических волнах (ПАВ), микрополосковые, волноводные и др.

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

$$\Delta F = \frac{f_0}{Q}$$

Резонатор обладает конечной добротностью Q и следовательно конечной полосой пропускания.

Для LC-резонаторов $Q \le 50 - 200$

Пример: $f_0 = 10 \text{ M}\Gamma\text{ц}, Q=100$

$$\Delta F = \frac{10 \cdot 10^6}{100} = 10^5 \Gamma$$
ц или 100 к Γ ц

Построить с использованием таких резонаторов фильтр с полосой пропускания 10 кГц невозможно

Чем больше резонаторов содержит фильтр, тем лучше его АЧХ может быть приближена к прямоугольной Для обеспечения требуемой полосы пропускания фильтра ($\Delta F_{\text{треб}}$) при приемлемой форме AЧX необходимо выполнение условий:

$$Q_{\text{tpe6}} >> \frac{f_c}{\Delta F_{\text{tpe6}}}$$

$$N_{\text{pes}} > 3 - 5$$

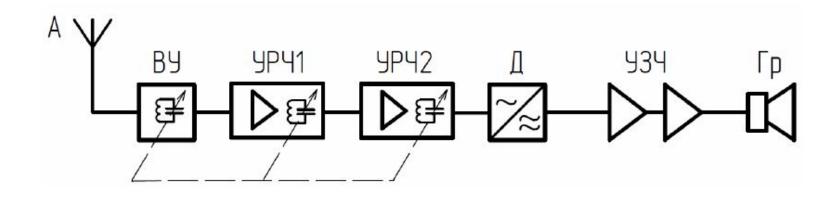
•
$$N_{pes} > 3 - 5$$

Примеры:

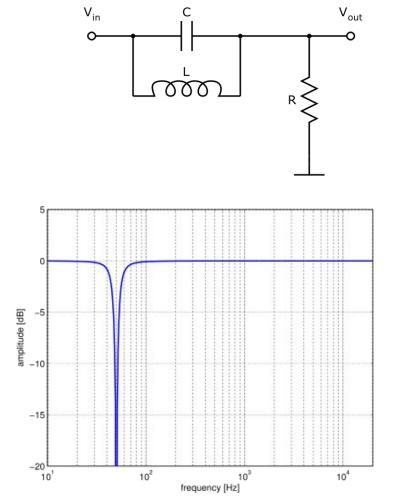
АМ вешание на СВ АМ вещание на КВ $f_{\rm o}$ =1260 к Γ ц, $\Delta F_{\rm пр.треб}$ =10 к Γ ц f_0 =15150 к Γ ц, $\Delta F_{\text{пр.треб}}$ =10 к Γ ц $Q_{\text{tpe6}} > \frac{1260}{10} = 126$ $Q_{\text{tpe6}} > \frac{15150}{10} = 1515$

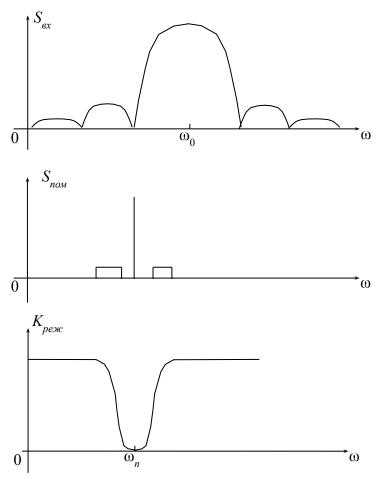
Можно попробовать реализовать

На LC резонаторах реализация невозможна. Можно попробовать построить приемник на кварцевых фильтрах. Но он будет неперестраиваемым


Возможный путь сужения полосы - использование положительной обратной связи Сейчас не используют - работа приемника крайне нестабильна

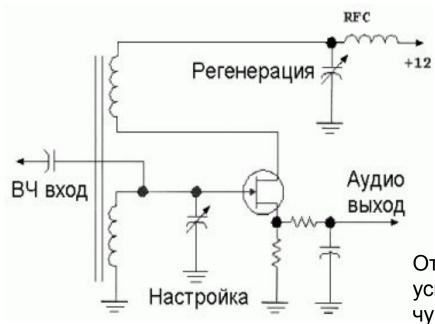
3. Проблема перестройки приемника прямого усиления


- Необходимо перестраивать большое число резонаторов
- При перестройке изменяются параметры связи между резонаторами изменяется форма АЧХ
- При перестройке изменяется полоса пропускания чем выше частота настройки, тем шире полоса


Пример:

Пример структуры приемника прямого усиления:

Для подавления узкополосных помех (непрерывные помехи, модулированные узким спектром, импульсы большой длительности) применяются *режекторные* фильтры.

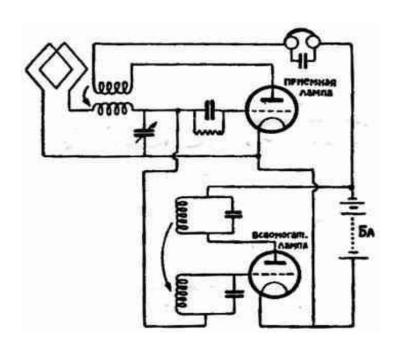


АЧХ режекторного фильтра промышленной частоты, применяемый в аудиоустройствах

3. Приемники с регенеративным усилителем

При помощи положительной обратной связи (ПОС) в резонансный контур вносится отрицательное сопротивление, частично компенсирующее потери в нем, что увеличивает коэффициент усиления.

Такие приемники обладают невысокой устойчивостью, так как работают в режиме, близком к самовозбуждению. При этом возможно проникновение генерируемых колебаний в антенну, а их излучение ведет к усилению помех другим приемникам, что *нежелательно* с точки зрения ЭМС.

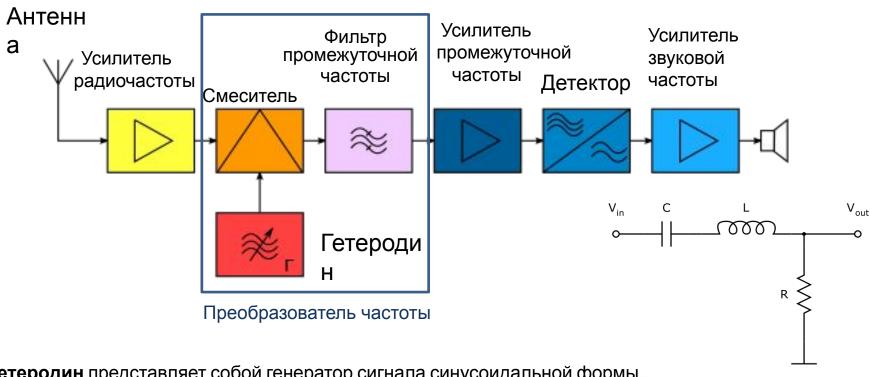


Регенеративный детектор на полевом транзисторе с индуктивной обратной связью

Отличается от приёмников прямого усиления более высокой чувствительностью (ограничена шумами) и избирательностью (ограничена устойчивостью параметров), пониженной устойчивостью работы

4. Суперрегенеративный приемник

В суперрегенеративном приемнике положительная обратная связь (ПОС) с УРЧ периодически изменяется с некоторой вспомогательной частотой, значительно превышающей частоту модуляции сигнала.


В течение части периода вносимое сопротивление становится отрицательным и в колебательном контуре возбуждаются колебания.

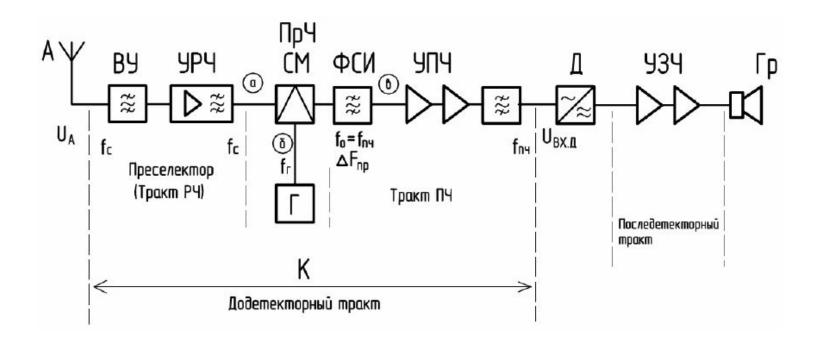
Амплитуды этих колебаний превышают амплитуду принимаемых сигналов в *10*⁴ раз и более.

Интенсивность их пропорциональна принимаемым сигналам, т.е. генерируемые колебания в сущности являются усиленными сигналами.

Суперрегенеративному приемнику, как и регенеративному свойственны искажения сигналов и интенсивные паразитные излучения, что не отвечает требованиям ЭМС.

5. Супергетеродинные приемники

Гетеродин представляет собой генератор сигнала синусоидальной формы, настраиваемый, либо с фиксированной частотой.


Полосовой фильтр

Смеситель — основная часть преобразователя, нелинейное электронное устройство, где в результате нелинейных процессов образуются комбинационные <u>гармоники</u>, частоты которых равны разностям или суммам частот гармоник входных сигналов, либо частот кратных частотам исходных гармоник.

Полосовой фильтр предназначен для селекции нужного набора гармоник, обычно выполнен по стандартной схеме полосового фильтра на LC-элементах.

Супергетеродинный

приемник Принцип построения супергетеродинного приемника

Додетекторный тракт содержит преобразователь частоты (ПрЧ). ПрЧ выполняют с использование нелинейных элементов. На ПрЧ подают принимаемый сигнал (на частоте f_c) и сигнал местного генератора (гетеродина) с частотой f_r .

В зависимости от соотношения $f_{\rm c}, f_{\rm r}, f_{\rm nu}$ различают:

- $f_{\text{пч}} = f_{\text{r}} f_{c}$ приемник с верхним сопряжением
- $f_{\text{пч}} = f_{\text{c}} f_{\text{r}}$ приемник с нижним сопряжением

Основную обработку сигнала в додетекторном тракте (усиление и фильтрацию) проводят на промежуточной частоте ($f_{\pi q}$) Для этого служат усилитель промежуточной частоты (УПЧ) и фильтр сосредоточенной избирательности (ФСИ)

Супергетеродинный

Трудности, возникающие при усилении высокочастотного сигнала:

- а) чем выше частота принимаемого супергетеродинным приемником сигнала, тем сложнее выполнить усилитель высокой частоты. На высоких частотах часто возникают условия для его самовозбуждения. Попытка реализовать усилитель радиочастоты в виде широкополосного усилителя тоже приводит к определенным трудностям.
- б) необходимость построения перестраиваемого узкополосного фильтра, настраиваемого на рабочий сигнал. Выполнить фильтр со стабильными параметрами при его перестройке в диапазоне частот практически невозможно.

Требования к этому фильтру получаются противоречивыми. С одной стороны, этот фильтр должен ослаблять соседний канал приема, а с другой стороны не искажать принимаемый сигнал. В результате, при необходимости перестройки частоты требуется из $\xi = \frac{\Delta f_{nc}}{f_{nc}}$ отностальную полосу пропускания фильтра:

, где — полоса частот полезного сигнала,

 $f_{\rm nc}$ — несущая частота полезного сигнала

Супергетеродинный приемник

Даже в том случае, когда приемник разрабатывается на одну фиксированную частоту, очень трудно обеспечить параметры узкополосного фильтра. На частоте 450 МГц очень трудно (практически невозможно, оссоль этом минимальная добротн $Q = \frac{f}{\Delta f} = \frac{450}{0.01} = 45000$ невозможно) обеспечить полосу пропускания фильтра равную 10 кГц. При

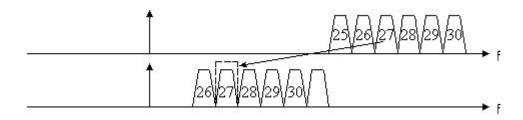
Добротность избирательной цепи, равную нескольким сотням тысяч единиц технически выполнить невозможно!

Задача РЕШАЕТСЯ в два этапа — перестройка по диапазону частот и обеспечение избирательности по соседнему каналу.

Перенос спектра принимаемых частот осуществляется при помощи тригонометрического преобразования:

$$\sin \alpha \cdot \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

тогда напряжение на выходе перемножителя, который часто называется смесителем будет записываться:


$$U_{cM} = \sin(\omega_c \cdot t + \varphi) \times \sin(\omega_z \cdot t) = \frac{1}{2} \left(\cos((\omega_c - \omega_z) \cdot t + \varphi) + \cos((\omega_c + \omega_z) \cdot t + \varphi) \right)$$

Супергетеродинный

ПРИЕМНИКУзкополосный фильтр на выходе умножителя легко подавляет одну из этих компонент. Оставшаяся ч•стотная компонента выходного сигнала называется промежуточной частотой супергетеродинного приемника. Обычно на выходе смесителя супергетеродинного приемника выделяется разностная компонента. В этом случае на входе усилителя промежуточной частоты (УПЧ) супергетеродинного приемника формируется сигнал промежуточной частоты, с частотой:

$$f_{\rm np} = f_c - f_{\rm r}$$
 или $f_{\rm np} = f_{\rm r} - f_{\rm c}$

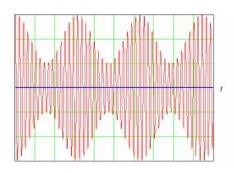
При помощи умножителя можно легко перемещать спектр входного сигнала по частоте, изменяя частоту местного генератора — гетеродина.

При подаче на входы преобразователя сигнала с частотой f_c и от гетеродина с частотой f_s на выходе его получают колебания с комбинационными частотами

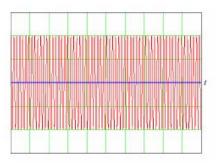
$$\propto f_{_{\rm C}} + \beta f_{_{\rm F}}$$
, где $lpha$ и eta равны $\pm 1,\,\pm 2,\,...$

Резонансная цепь на выходе преобразователя настроена на частоту f np, представляющую разность (разностное преобразование) или сумму (суммарное преобразование) частот f_c u f_s .

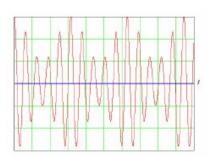
При разностном преобразовании при α =1, β = -1 имеет место «нижняя» настройка гетеродина, когда $f_{s} < f_{c}$, а при $\alpha = -1$, $\beta = 1$ - «верхняя» $f_{s} > f_{c}$.

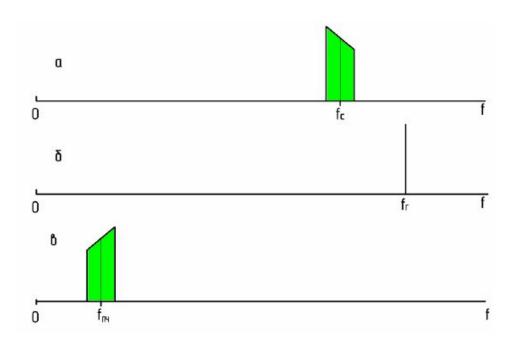

При осуществлении преобразования с переносом спектра сигнала вверх, когда $f_{np} > f_{c,max}$, такой супергетегодинный приемник называют инфрадином.

Супергетеродинный приемник


Преобразование частоты

Временное представление


Точка а (вход сигнала)


Точка б (вход гетеродина)

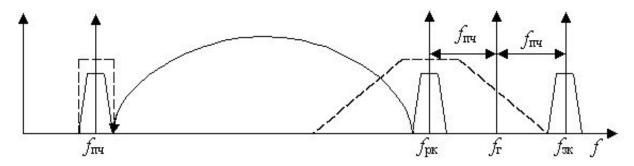
Точка в (выход ПЧ)

Спектральное представление

Супергетеродинный приемник

УРЧ Смеситель ФОИ УПЧ Демодул. Демодулированный сигнал

етеродин


Гетеродин осуществляет перестройку в диапазоне частот, поэтому часто выполняется в виде синтезатора частоты, который может настраиваться на ряд фиксированных частот и обладает стабильностью частоты, соответствующей кварцевому генератору или атомному эталону частоты.

Для уменьшения требований к фильтру основной избирательности (ФОИ) тракт промежуточной частоты супергетеродинного приемника выбирается достаточно низкочастотным. Это позволяет обеспечить значительную относительную расстройку частоты соседнего канала по отношению к полосе принимаемого супергетеродинным приемником сигнала.

Так как промежуточная частота супергетеродинного приемника является фиксированной, позволяет применить в качестве фильтра промежуточной частоты кварцевый, электроми укланический измента, может быть образована при помощи двух уравнений. При этом результат невозможно отличить друг от друга: $f_{\rm пp} = f_c - f_{\rm r}$ или $f_{\rm пp} = f_{\rm r} - f_{\rm c}$.

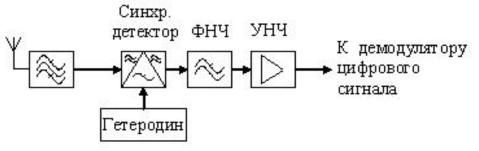
Таким образом, супергетеродинным приемником могут одновременно приниматься сразу два частотных канала, отстоящих друг от друга на величину $2f_{\Pi^{\mathsf{q}}}$. Один из этих каналов называется рабочим каналом супергетеродинного приемника, а другой — зеркальным.

Супергетеродинный приемник

Процесс образования зеркального канала в супергетеродинном приемнике

Единственный способ избавиться от зеркального канала — это подавить его сигнал во входной цепи радиоприемника, иначе говоря, подавление зеркального канала зависит от избирательности входной цепи супергетеродинного радиоприемника и расстройки зеркального канала:

$$\xi_{\rm sx} = \frac{f_{\rm sx} - f_{\rm px}}{f_{\rm px}}$$


При реализации супергетеродинного приемника цифровых методов модуляции следует учитывать особенности преобразования частоты. Полезная информация цифрового сигнала обычно содержится в относительном изменении фазы несущего колебания, но оно приводит к соответствующему приращению частоты:

Положительное приращение фазы будет увеличивать частоту принимаемого супергетеродинным приемником сигнала, а отрицательное — уменьшать. При преобразовании частоты в супергетеродинном приемнике приращение частоты может, как $\mathbf{F}_{\mathbf{rrr}} = f_{\mathbf{c}} - f_{\mathbf{z}}$ ся — при

преобразовании становиться противоположным так и при $f_{\mathbf{n}\mathbf{x}}=f_{\mathbf{z}}-f_{\mathbf{c}}$

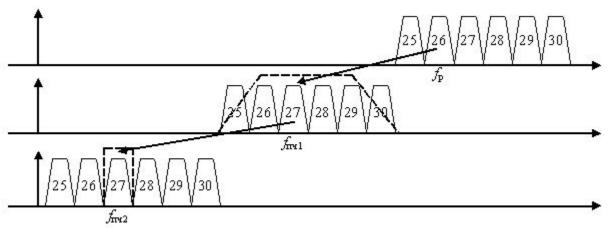
6. Приемник прямого преобразования частоты (с преобразованием на

нулевую ПЧ)

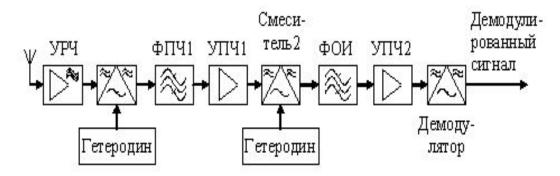
<u>Избирательность по частоте</u> можно осуществить фильтром низкой частоты, сложность которого при тех же характеристиках подавления соседнего канала будет в два раза меньше. Перенос спектра радиочастот в область низких частот можно осуществить при помощи следующего тригонометрического преобразов

 $\sin \alpha \cdot \sin \alpha = \frac{1}{2}(1 + \cos 2\alpha)$

В качестве второго синусоидального сигнала с частотой, совпадающей с частотой принимаемого радиосигнала, применяется сигнал местного генератора, называемого гетеродином. Напряжение на выходе перемножителя, который в данном случае называется синхронным детектором. будет записываться следующим образом:


$$U_{\partial} = U_{c} \sin(\omega_{c} \cdot t) \times U_{z} \sin(\omega_{z} \cdot t) = \frac{1}{2} (U_{c} \cdot U_{z} + \cos(2\omega_{c}) \cdot t)$$

Напряжение удвоенной частоты радиосигнала легко может быть подавлено **фильтром низкой частоты.**



Супергетеродинный приемник с двойным преобразованием частоты

При двойном преобразовании частоты сначала переносят группу каналов на первую промежуточную частоту, выделяют ее, а затем выделяют рабочий канал на второй промежуточной частоте.

Перенос спектра рабочего канала при двойном преобразовании частоты

Структурная схема <u>супергетеродинного радиоприемника</u> с двойным преобразованием частоты

7. Радиоприемники с цифровой обработкой сигнала

Большее внимание уделяется построению радиоприемных трактов с применением цифровой обработки сигналов (ЦОС), называемых в литературе SDR — software defined radio. Эта технология основывается на возможности оцифровки радиосигнала в реальном времени и последующей обработке программными или аппаратными цифровыми средствами — цифровыми сигнальными процессорами, ПЛИС и т.д. Технология SDR позволяет осуществлять прием и демодуляцию сигналов, в которых используются цифровые виды модуляции, такие как DPSK, QAM, GMSK и т.д. В зависимости от частоты и ширины спектра принимаемого сигнала цифровая обработка в приемнике может использоваться как по радиочастоте (см. рис. 1), так и после переноса сигнала на фиксированную промежуточную частоту — обработка по ПЧ (см. рис. 2).

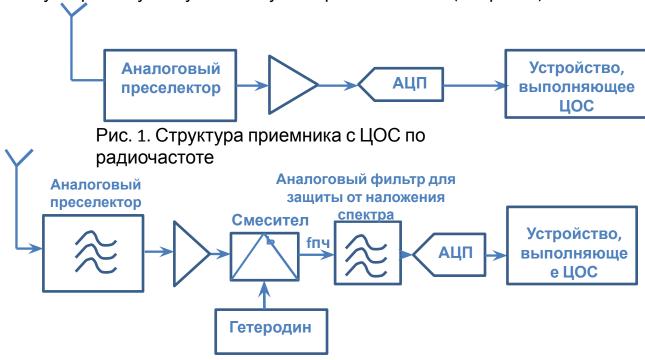
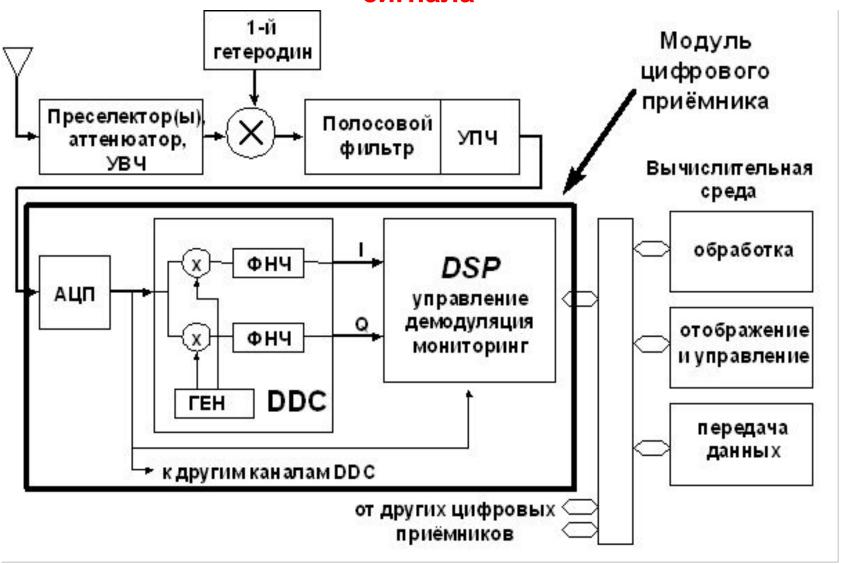



Рис. 2. Структура приемника с ЦОС по промежуточной частоте

Радиоприемники с цифровой обработкой сигнала

Радиоприемники с цифровой обработкой сигнала

АЦП преобразует аналоговый сигнал в цифровой поток отсчётов и дальнейшая обработка выполняется цифровым образом.

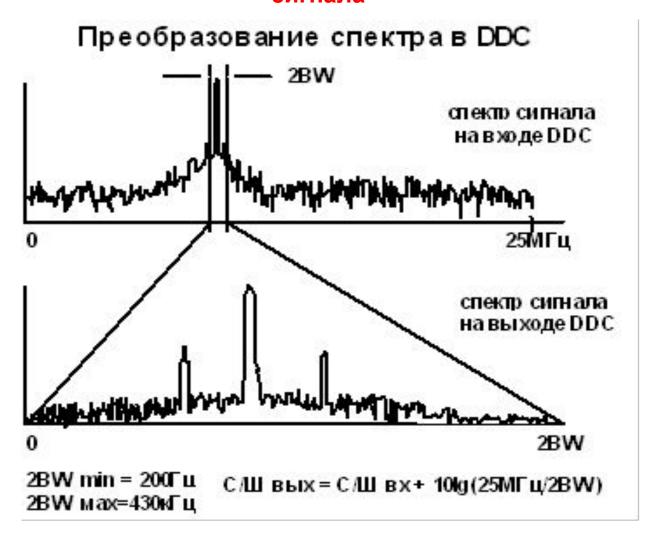
Основные элементы цифровой части приёмника сосредоточены **в модуле цифрового приёмника**. Этот модуль производит <u>канальную фильтрацию и демодуляцию сигнала</u>. Модуль может обрабатывать один или несколько каналов приёма.

Основные компоненты модуля - высокочастотный **АЦП**, цифровой квадратурный понижающий преобразователь **DDC** (Digital Down Converter)(их может быть несколько) и сигнальный процессор.

Модуль цифрового приёмника может производить мониторинг спектра входного сигнала с помощью быстрого преобразования Фурье (БПФ).

С выхода модуля информационный поток демодулированных данных от одного или нескольких каналов приёма поступает в вычислительную среду для дальнейшей обработки. В эту вычислительную среду поступают данные и от других аналогичных приёмных модулей, которые подключены к выходу ПЧ аналоговых приёмных трактов других диапазонов. В модуле цифрового приёмника отсчёты с выхода АЦП обрабатываются специализированным сигнальным процессором DDC (Digital Down Converter).

Функции этого процессора - преобразование информативного спектра частот в область низких (нулевых) частот, квадратурная фильтрация и децимация отсчётов сигнала.

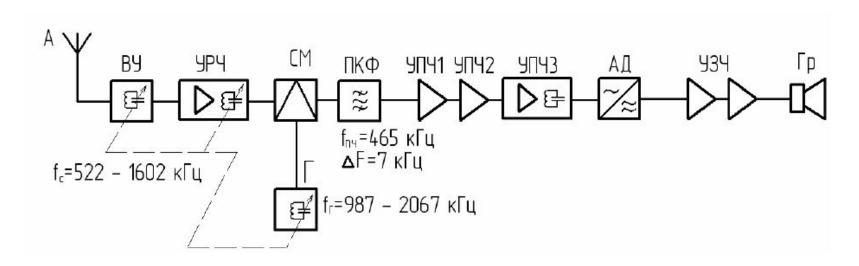

Децимация (в k раз) – сокращение размера сигнала путем удаления последовательностей из k-1 избыточных отсчетов (т.е. остается лишь каждый k-й отсчет).

Децимация сигнала производится, как правило, после его преобразования, сужающего ширину спектра сигнала в k раз. Это и приводит, согласно теореме Найквиста-Колмогорова, к сокращению числа отсчетов, необходимых для полного восстановления сигнала, в k раз.

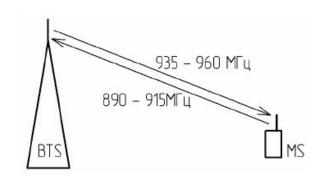
По реализуемым функциям - это цифровой приёмник прямого преобразования. **DDC** имеет два перемножителя, генератор отсчетов **SIN и COS**, идентичные каналы **HЧ децимирующих фильтров**. Частота настройки внутреннего генератора может изменяться в диапазоне от 0 до 25МГц (до половины тактовой частоты DDC). Частота среза фильтров изменяется от сотен Гц до сотен кГц. Процессор производит децимацию отсчётов сигнала для того, чтобы скорость потока данных с выхода DDC была сообразна ширине спектра выходного сигнала.

Цифровая обработка сигнала (ЦОС) аппаратно организована на процессоре цифровой обработки, в состав которого может входить и **АЦП с ЦАП**. Для разработки программ ЦОС существует специальное программное обеспечение.

Радиоприемники с цифровой обработкой сигнала



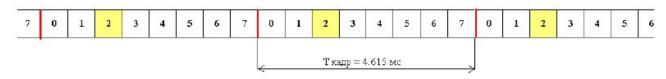
Пример. Радиовещательный приемник СВ диапазона


Модуляция АМ

Диапазон частот 517 – 1607 кГц. Частоты несущих кратны 9 кГц (522, 531, 540, .., 1602 кГц)

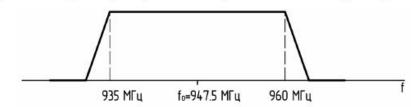
 $f_{\Pi^{\text{H}}} = 465 \text{ к}\Gamma$ ц, $\Delta F = 7 - 10 \text{ к}\Gamma$ ц Диапазон перестройки гетеродина $f_{\Gamma} = 987 - 2067 \text{ к}\Gamma$ ц. Гетеродин: LC-генератор или синтезатор частот (СЧ) $f_{3\text{K}} = 1452 - 2532 \text{ к}\Gamma$ ц

Пример. Приемник мобильной станции GSM 900

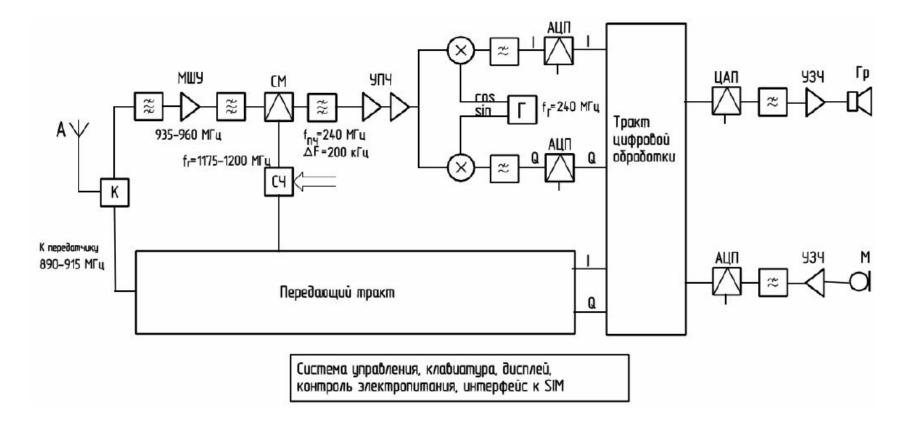

Модуляция GMSK

Диапазон частот 935 – 960 МГц

Частоты несущих кратны 200 кГц (935.2, 935.4, 935.6, .., 959.8 МГц)


Всего 124 частотных канала

Метод доступа FDMA/TDMA



Преселектор неперестраиваемый, на основе ПАВ фильтров

 $f_{\Pi^{\mathrm{H}}}=240~\mathrm{M}\Gamma$ ц, $\Delta F=200\text{-}300~\mathrm{k}\Gamma$ ц Диапазон перестройки гетеродина $f_{\Gamma}=1175.2-1200.2~\mathrm{M}\Gamma$ ц Гетеродин - СЧ $f_{\mathrm{3K}}=1415.2-1440.2~\mathrm{M}\Gamma$ ц

 $\Phi {
m CH-\Pi AB} \; \Phi$ ильтр (уст-во на поверхностных акустических волнах $f_0 = 240 \; {
m M}\Gamma$ ц, $\Delta F = 200\text{--}300 \; {
m k}\Gamma$ ц

При передаче/приеме телефонии тракт цифровой обработки решает задачи:

- Речевое кодирование / декодирование
- Канальное кодирование / декодирование
- Шифрация / дешифрация

- Адаптив ная фильтрация (эквалайзинг) при приеме
- Мультиплексирование / демультиплексирование
- Модуляция/ демодуляция

Спасибо за внимание.