

Презентация 4. Газовые углеводородные системы Газогидраты Газоконденсаты

Классификация газов по Соколову В.А. (1966)

T	Xam	ический состав		
Тип газа по условиям нахождения в природе	Основные компо не нты	Важнейшие примеси	Происхождение газа	
Газы атмосферы	N ₂ , O ₂	Ar, CO ₂ , Ne, He, Kr, Xe, H ₂ , O ₃	Смесь газов химического, биохимичес- кого и радиогенного происхождения (Не, Ar)	
Газы земной поверхности: почвы и подпочвы болотные, торфяные морских субаквальных осадков	CO ₂ , N ₂ , O ₂ CH ₄ , CO ₂ , N ₂ CO ₂ , CH ₄ , N ₂	Аг, СН ₄ , N ₂ O, Н ₂ , благородные газы (из атмосферы) Аг, Н ₂ , СО, NН ₃ , N ₂ O, Н ₂ S, благородные газы (из атмосферы) Н ₂ , NH ₃ , H ₂ S, Аг	СО2, СН4, N2O, Н2 преимущественно био- химического происхождения, эти газы при- мешаны к атмосферному воздуху СН4, СО2, Н2, NН3, N2O, Н2S преимущест- венно биохимического происхождения Все газы, кроме благородных, преимущест- венно биохимического происхождения	
Газы осадочных пород: нефтяных месторождений газовых месторождений каменноугольных место- рождений рассеянные	CH_4 , TY , N_2 , CO_2 CH_4 , N_2 , CO_2 CH_4 CO_2 , CH_4	H ₂ S, He, Ar, H ₂ , TY, H ₂ S, He, Ar, H ₂ CO ₂ , N ₂ , H ₂ , TY, He, Ar N ₂ , TY, H ₂ , H ₂ S	Все газы, кроме благородных, главным образом химического происхождения. Имеется примесь газов биохимического происхождения (частично H ₂ S и др.). На значительных глубинах при повышенной температуре нормальная деятельность микроорганизмов прекращается и биохимические газы здесь отсутствуют	
Газы океанов и морей	CO ₂ , N ₂	NH ₃ , H ₂ S, O ₂ , Ar	NH3, H2S, O2 и частично СО2 биохимичес-	

Классификация газов по Соколову В.А. (1966)

			кого происхождения, часть CO_2 и N_2 образуется химическим путем, а Ar имеет радиогенное происхождение. В верхние слои океанов и морей CO_2 , N_2 и O_2 попадают из атмосферы
Газы метаморфических пород	CO ₂ , N ₂ , H ₂	CH ₄ , H ₂ S, He, Ar	Газы, кроме благородных, химического происхождения
Газы магматических пород	CO ₂ , H ₂	N_2 , H_2 S, He, Ar. Ha больших глубинах SO_2 , HCl, HF	Газы, кроме благородных, химического происхождения
Вулканические газы: высокотемпературные (из лавовых озер и др.) фумарольные (100—300 °C) термальных источников	CO_2 , H_2 , SO_2 , HCl , HF CO_2 , H_2 , H_2S , SO_2 , CO_2	N_2 , CO, NH ₃ , He, Ar N_2 , CO, NH ₃ , He, Ar N_2 , CO, NH ₃ , He, Ar	Вулканические газы (лавовых озер, фумарольные, газы термальных источников) представляют собой в той или иной степени измененные газы, поступающие из верхней мантии с примесью газов из вышерасположенных оболочек. Все газы, кроме благородных, химического происхождения
Газы космоса	H ₂ , H, He	СО, радикалы СН, СН ₂ , ОН и другие, ионизиро- ванные атомы элементов Ne, N, Ar	Газы космоса образовались в результате ядерных, радиационно-химических и химических реакций

Примечание. ТУ — тяжелые углеводороды.

Классификация рассеянных УВ газов (ВНИИЯГГ)

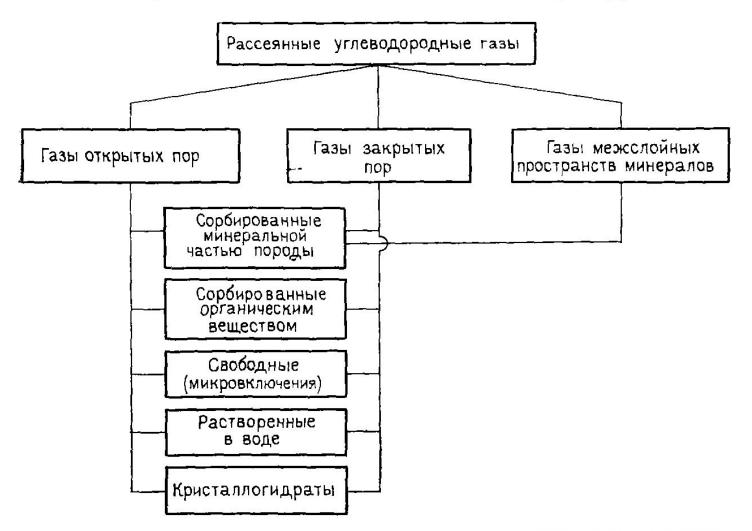


РИС. 95 КЛАССИФИКАЦИЯ РАССЕЯННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ (ВНИИЯГГ)

Гидраты природных газов

- Твердые кристаллические вещества, кристаллическая решетка которых построена из молекул воды, во внутренних полостях которых размещены молекулы газа, образующего гидрат.

Гидраты природных газов

Физико-химические свойства некоторых гидратов (Бык, Фомина, 1970)

Газ гидратообразователь	η	V, м ³	р, г/см ³
CH ₄	5,75	1,26	0,92
C_2H_6	5,75	1,285	1,00
C_2H_6	17,0	1,307	0,88
и-C ₄ H ₁₀	17,0	1,314	0,90
CO ₂	5,75	1,28	1,11
H_2	57,6	1,26	1,05

Примечание: ρ — плотность; V — удельный объем воды в гидрате; η — отношение числа молекул воды к числу молекул газа в гидрате

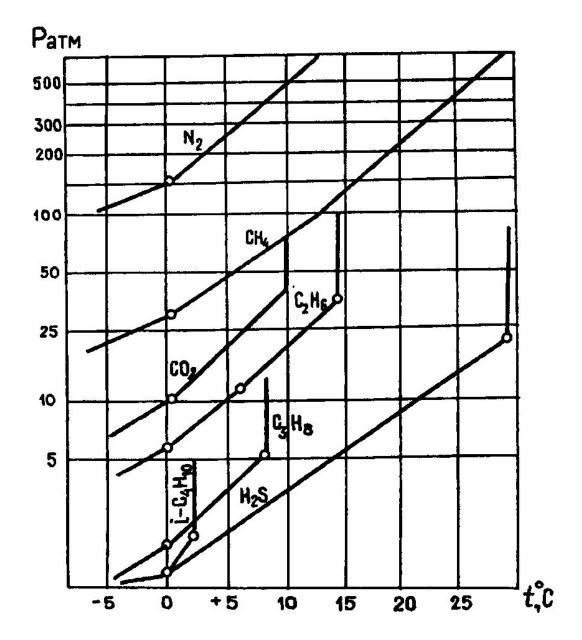


Рис. 1.17. Условия образования гидратов индивидуальными компонентами природных газов (Бык, Фомина, 1970)

Газоконденсатные системы

- Углеводородные системы в которых при данных термобарических условиях УВ (С5 и более) находятся в растворенном парообразном состоянии, растворителями являются метан, гомологи метана и углекислота