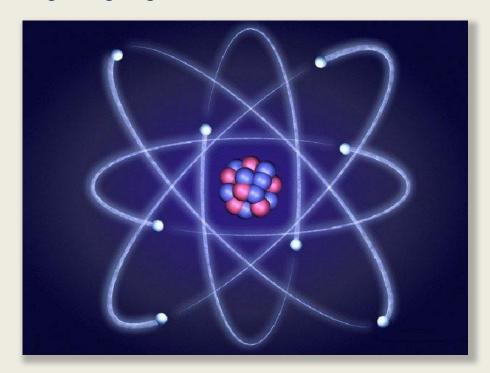
ФИЗИКА АТОМНОГО ЯДРА

ЕГЭ. ФИЗИКА
РЕПЕТИЦИЯ ПО ФИЗИКЕ
Владимир Петрович Сафронов
г. Ростов-на-Дону, 2015
Звоните: т. 8 928 111 7884
Пишите: safron-47@mail.ru


Нуклонная модель ядра Гейзенберга-Иваненко

Состав ядра

Ядро атома состоит из элементарных частиц — протонов (**p**) и нейтронов (**n**). Их общее название — **нуклоны**. Масса протона примерно равна массе нейтрона

$$m_{\rm p} = 1,6726 \cdot 10^{-27} \,\mathrm{K}$$
; $m_{\rm n} = 1,6749 \cdot 10^{-27} \,\mathrm{K}$.

Это в **1886** раз больше массы электрона $m_e = 9,1095 \cdot 10^{-31}$ кг. Линейный размер ядра составляет $\sim 10^{-15}$ м, атома $\sim 10^{-10}$ м.

Характеристики ядра:

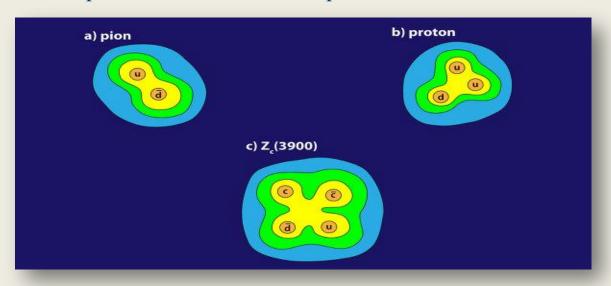

3арядовое число Z — число протонов в ядре, равное порядковому номеру элемента в таблице Менделеева.

Maccoвое число A — число нуклонов в ядре.

 $\mathbf{\mathsf{\mathsf{\mathsf{Y}}}}$ **ч** $\mathbf{\mathsf{\mathsf{\mathsf{Y}}}}$ $\mathbf{\mathsf{\mathsf{\mathsf{Y}}}}$

Ядро химического элемента X обозначается тем же символом, что и атом с указанием чисел \boldsymbol{A} и \boldsymbol{Z} :

$$_{Z}^{A}X(_{2}^{4}He,_{8}^{16}O).$$
Изотопы



<u>Ядерные силы</u>

обеспечивают притяжение нуклонов и существенно больше сил кулоновского отталкивания протонов.

Ядро сохраняет стабильность, если **силы ядерного притяжения** нуклонов больше сил кулоновского отталкивания протонов.

Притяжение нуклонов в ядре объясняется тем, что они обмениваются квантами ядерного поля — элементарными частицами — глюонами.

Из обменного характера взаимодействия вытекают свойства ядерных сил:

Близкодействие — радиус действия ядерных сил < 2,2·10-15 м.

Насыщенность — каждый нуклон взаимодействует с ограниченным количеством соседей.

Зарядовая независимость — не зависят от электрического заряда нуклона.

Энергия связи атомных ядер

 E_{cr} — это энергия, которую надо затратить для расщепления ядра на нуклоны.

Энергия свободных нуклонов больше, чем их энергия в ядре

Взаимосвязь массы и энергии

$$E = m \cdot c^2$$

объясняет уменьшение исходной массы протонов и нейтронов при образовании ядра (дефект массы Δm):

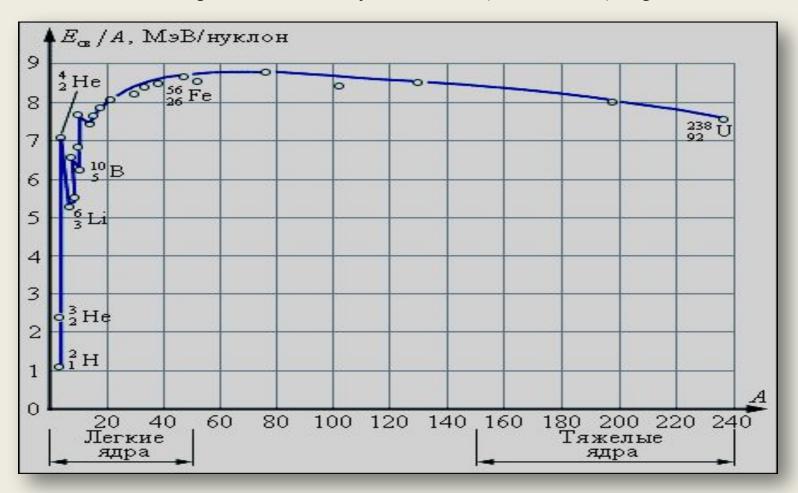
так как масса свободных нуклонов больше, чем их энергия в ядре, то

$$\Delta m = Z \cdot m_{\text{papo}} N \cdot m_{\text{n}} - m$$

По дефекту массы определяется энергия связи ядра:

$$E_{\rm CR} = \Delta m \cdot c^2$$

 $m_{\rm p}$, $m_{\rm n}$ — масса протона и нейтрона,


$$m_{\rm ядро}$$
 — масса ядра,

с — скорость света.

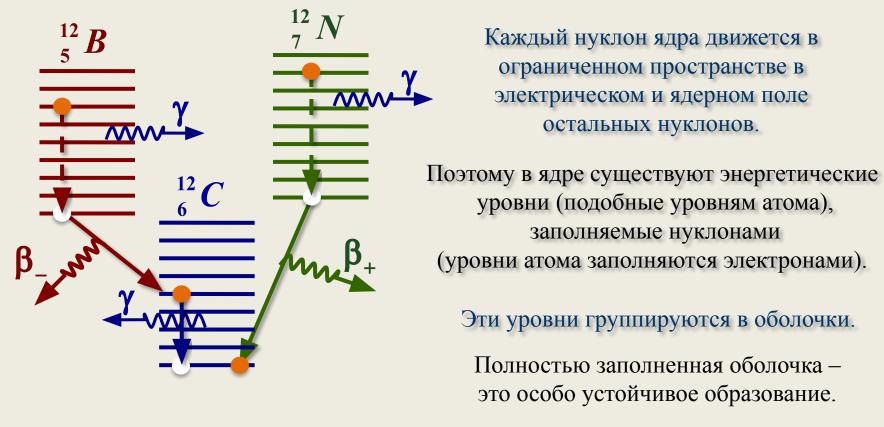
Удельная энергия связи

 $\Delta E_{_{\mathrm{CB}}}$, $_{_{_{\mathrm{CB}}}}$ — это энергия связи ядра, приходящаяся на один нуклон:

 $\Delta E_{\rm cB} = E_{\rm cB} / A$. Она зависит от массового числа A ядра. Чем больше энергия связи, тем устойчивей (стабильней) ядро элемента.

Наиболее устойчивыми являются ядра с массовыми числами $A = 50 \div 60$ (элементы от **Cr** до **Zn**) с ΔE св = 8,7 МэВ/нуклон.

Атомная и водородная бомбы


С дальнейшим ростом числа нуклонов A энергия связи ΔE_{cs} убывает, поскольку увеличивается энергия кулоновского отталкивания.

Для самого тяжелого природного элемента — урана ΔE св = 7,5 МэВ/нуклон.

Радиоактивность

Оболочечная модель атомного ядра

Неустойчивые (возбужденные) ядра переходят в стабильное состояние, испуская энергию в виде радиоактивного у- излучения.

При испускании α-, β- частиц происходит превращение ядер одних элементов в ядра других химических элементов .

Радиоактивность

самопроизвольное превращение нестабильных атомных ядер в другие, сопровождающееся излучением элементарных частиц.

Виды радиоактивных излучений

Альфа-распад

происходит с испусканием α -частиц — ядер атома гелия ${}^4_2 He$. **Бета-распад**

происходит с испусканием β -частиц — электронов $\frac{0}{-1}e$

или их античастиц — позитронов ${0 \atop 1}e$

Гамма-излучение

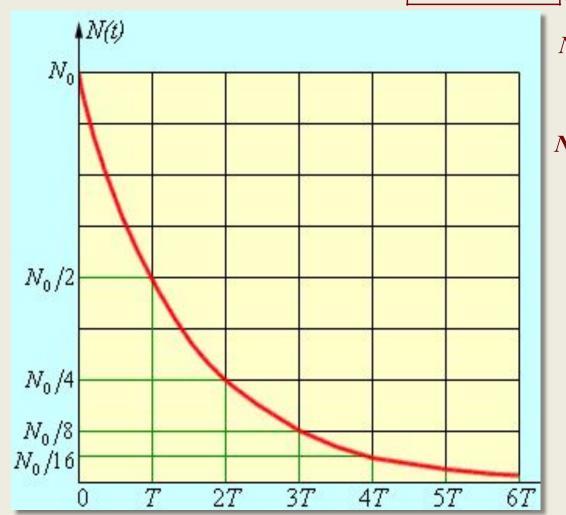
излучение электромагнитной энергии с длиной волны $\lambda \sim 10^{-12}$ м,

сопровождающее α- и β-распады.

Типы частиц определяют по их поведению *в магнитном поле (см. рис)*.

Радиоактивность ядер в **природных** условиях называется *естественной*.

Радиоактивность ядер, **полученных** в ядерных реакциях— *искусственной*.


Любые радиоактивные превращения подчиняются одинаковым законам.

Период полураспада Т, с - это время, за которое распадается половина первоначальных ядер.

Закон радиоактивного распада

определяет количество *нераспавшихся* ядер в заданный момент времени *t*.

$$N = N_0 2^{-\frac{t}{T}}$$

- N_0 количество ядер в начальный момент времени t = 0,
- N количество нераспавшихся ядер в момент времени *t*.
 - **Т** период полураспада известен для любого элемента.

Правила смещения

позволяют установить, какое ядро возникает в результате распада данного материнского ядра

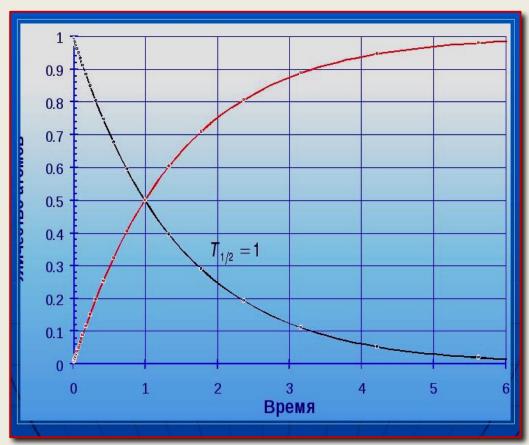
Для
$$\alpha$$
-распада $\stackrel{A}{Z}X \rightarrow \stackrel{A-4}{Z-2}Y + \stackrel{4}{_2}He$. Для β -распада $\stackrel{A}{Z}X \rightarrow \stackrel{A}{_{Z+1}}Y + \stackrel{0}{_{-1}}e$.

Период полураспада – основная величина, определяющая скорость радиоактивного распада.

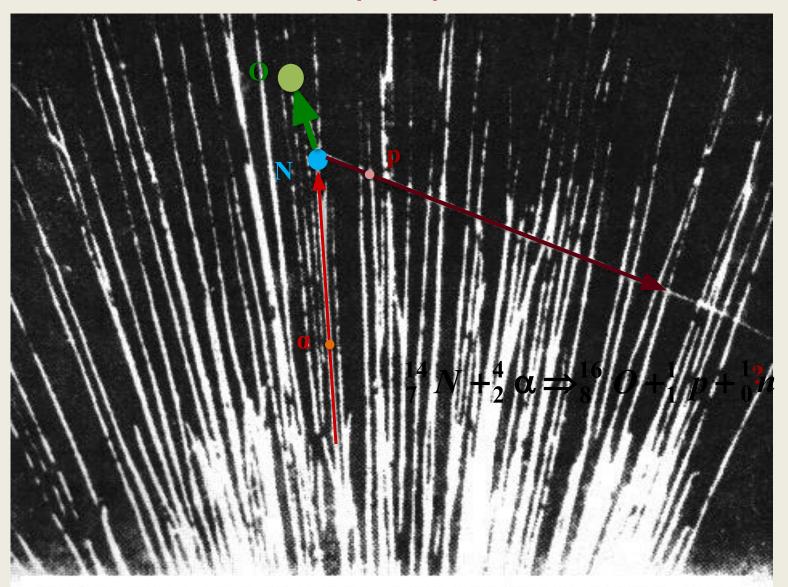
элемент	Период полураспада
уран	4,5 млрд. лет
торий	1 0 ¹⁰ лет
Радий	1620 лет
висмут (210)	5 дней
полоний(218)	3 минуты
полоний(214)	10-6 секунд/
1 1 1 1 1	

В.П. Сафронов 2015 safron-47@mail.ru

Активность радиоактивного источника


(или скорость распада) — число распадов в единицу времени.

А (Бк, беккерель); 1 Бк =
$$c^{-1}$$
.


В образце с активностью 1 Бк происходит в среднем 1 распад в секунду.

$$A(t) = A_0 2^{-\frac{t}{T}}.$$

Активность уменьшается со временем.

Ядерные реакции

Первое искусственное превращение элементов — взаимодействие а-частицы с ядром азота, в результате которого образовались ядро кислорода и протон.

Ядерные реакции

– это превращения атомных ядер $Z_1^{A_1}X_1$,

вызванное взаимодействием с элементарными частицами $Z_2^{A_2} x_2$,

или с другими ядрами.

Образование новых ядер $Z_1^{A_1}Y_1$

сопровождается испусканием элементарных частиц $^{A_2}_{Z_2} y_2$.

Ядерную реакцию можно представить так:

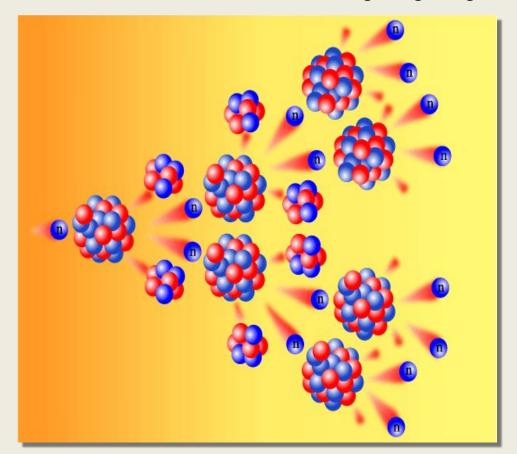
$$\frac{A_1}{Z_1}X_1 + \frac{A_2}{Z_2}X_1 \Rightarrow \frac{A_3}{Z_3}Y_2 + \frac{A_4}{Z_4}y_2$$
.

При ядерных реакциях выполняются следующие законы сохранения:

закон сохранения **массового числа:** $A_1 + A_2 = A_3 + A_4$,

закон сохранения **зарядового числа**: $Z_1 + Z_2 = Z_3 + Z_4$,

а также,


закон сохранения энергии,

закон сохранения импульса,

закон сохранения момента импульса.

Деление ядер урана

пример ядерной реакции.

Уран $^{235}_{92}U$, поглощая нейтрон, превращается в радиоактивный изотоп — уран 236 , который делится на стронций и ксенон, выделяя два-три новых нейтрона и энергию.

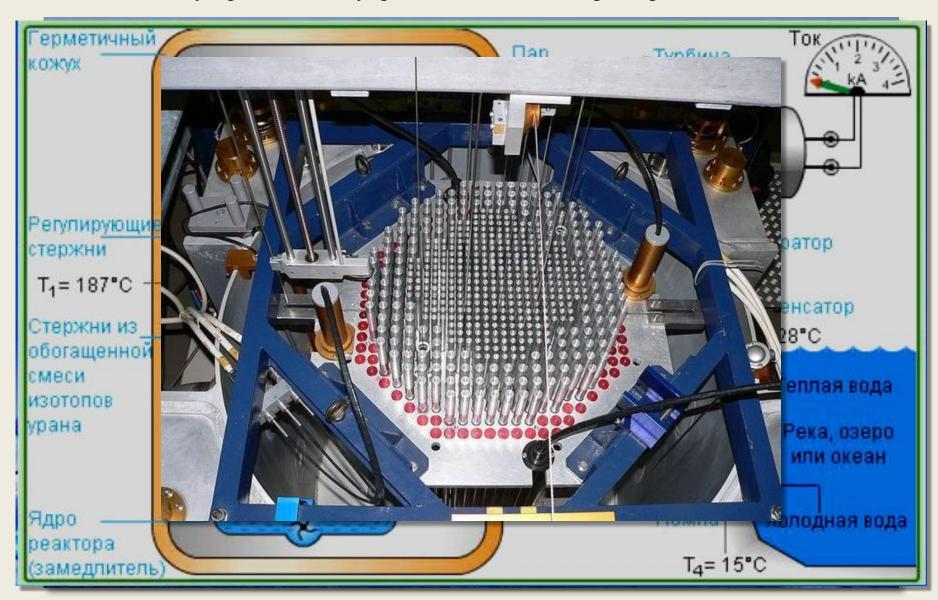
При поглощении нейтронов соседними ядрами урана возникает цепная реакция — взрыв.

По выделяемой энергии

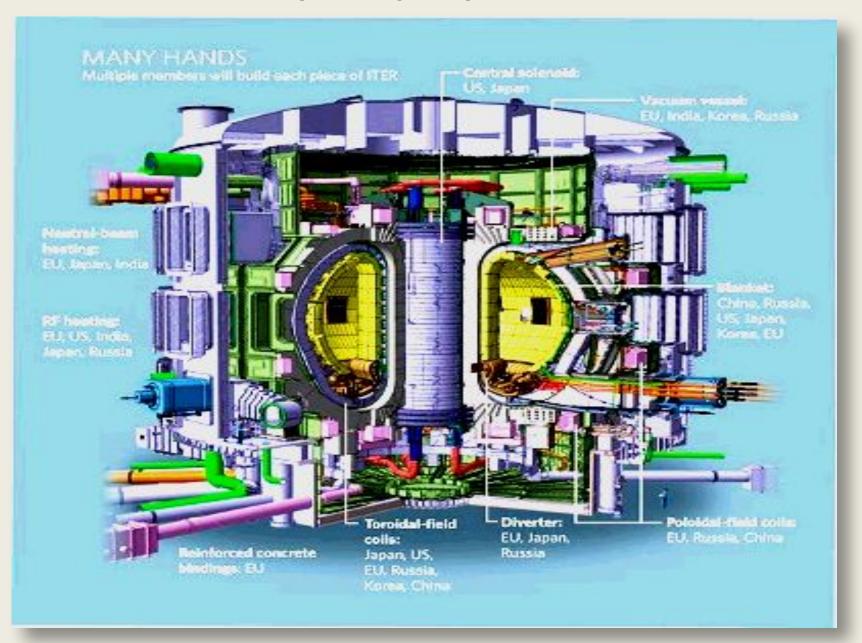
1 грамм урана

эквивалентен 3000000 г (3 т) угля.

1 тонна урана
эквивалентна 3 000 000 тонн угля.


Критическая масса

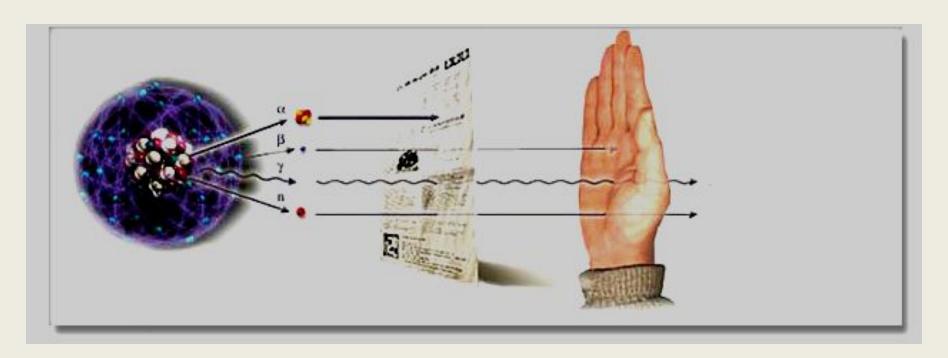
это минимальное количество делящегося вещества, необходимое для начала самоподдерживающейся цепной реакции деления.


Например, для урана **235** критическая масса **0,8÷45 кг**. Зависит от количества примесей, формы изделия, а также от окружения.

Ядерный реактор

устройство для управления цепной ядерной реакцией.

Термоядерная реакция


Биологическое действие радиоактивных излучений

объясняется ионизацией молекул клеток организма радиоактивными излучениями.

В клетках возникают мутации, что приводит к злокачественным образованьям и лучевой болезни.

Опасной для человека является доза облучения в **500 P** (рентген) — без лечения 50% смертность.

Биологический эквивалент рентгена — бэр.

КОНЕЦ «ФИЗИКА АТОМНОГО ЯДРА" КОНЕЦ КУРСА ФИЗИКИ