
Software ideals and history

Bjarne Stroustrup

www.stroustrup.com/Programming

Abstract
■ This is a very brief and very selective history of

software as it relates to programming, and especially
as it relates to programming languages and C++. The
aim is to give a background and a perspective to the
ideas presented in this course.

■ We would have loved to talk about operating systems,
data bases, networking, the web, scripting, etc., but
you’ll have to find those important and useful areas of
software and programming in other courses.

2Stroustrup/Programming

Overview
■ Ideals

■ Aims, heroes, techniques
■ Languages and language designers

■ Early languages to C++

(There is so much more than
what we can cover)

3Stroustrup/Programming

History and ideas

■ One opinion
■ “History is bunk”

■ Another opinion
■ “He who does not know history is condemned to repeat it”

■ Our view
■ There can be no professionalism without history

■ If you know too little of the background of your field you are gullible
■ History is littered with plausible ideas that didn’t work

■ “I have a bridge I’d like to sell you”
■ Ideas and ideals are crucial for practical use

■ And they are the real “meat” of history

4Stroustrup/Programming

What is a programming language?
■ A tool for instructing machines
■ A notation for algorithms
■ A means for communication among programmers
■ A tool for experimentation
■ A means for controlling computer-controlled gadgets
■ A means for controlling computerized devices
■ A way of expressing relationships among concepts
■ A means for expressing high-level designs

■ All of the above!
■ And more

5Stroustrup/Programming

Greek heroes

■ Every culture and profession must have ideals and heroes
■ Physics: Newton, Einstein, Bohr, Feynman
■ Math: Euclid, Euler, Hilbert
■ Medicine: Hippocrates, Pasteur, Fleming

6Stroustrup/Programming

Geek heroes

■ Brian Kernighan
■ Programmer and writer

extraordinaire

7

■ Dennis Ritchie
■ Designer and original

implementer of C

Stroustrup/Programming

Another geek hero
■ Kristen Nygaard

■ Co-inventor (with
Ole-Johan Dahl) of
Simula67 and of
object-oriented
programming and
object-oriented design

8Stroustrup/Programming

Yet another geek hero

■ Alex Stepanov
■ Inventor of the STL and

generic programming
pioneer

9Stroustrup/Programming

Two extremes

■ Academic beauty/perfection/purity
■ Commercial expediency

■ The pressures towards both are immense
■ Both extremes must be avoided for serious progress to occur

■ Both extremes encourage overstatement of results (hype) and
understatement (or worse) of alternatives and ancestor languages

10Stroustrup/Programming

Ideals

■ The fundamental aims of good design
■ Represent ideas directly in code
■ Represent independent ideas independently in code
■ Represent relationships among ideas directly in code
■ Combine ideas expressed in code freely

■ where and only where combinations make sense
■ From these follow

■ Correctness
■ Maintainability
■ Performance

■ Apply these to the widest possible range of applications

11Stroustrup/Programming

Ideals have practical uses

■ During the start of a project, reviews them to get ideas
■ When you are stuck late at night, step back and see

where your code has most departed from the ideals –
this is where the bugs are most likely to lurk and the
design problems are most likely to occur
■ Don’t just keep looking in the same place and trying the

same techniques to find the bug
■ “The bug is always where you are not looking – or you would have

found it already”

12Stroustrup/Programming

Ideals are personal
■ Chose yours well

13Stroustrup/Programming

Styles/paradigms
■ Procedural programming
■ Data abstraction
■ Object-oriented programming
■ Generic programming

■ Functional programming, logic programming,
rule-based programming, constraints-based
programming, aspect-oriented programming, …

14Stroustrup/Programming

Styles/paradigms
template<class Iter> void draw_all(Iter b, Iter e)
{

for_each(b,e,mem_fun(&Shape::draw)); // draw all shapes in [b:e)
}

Point p(100,100);
Shape* a[] = { new Circle(p,50), new Rectangle(p, 250, 250) };
draw_all(a,a+2);

■ Which programming styles/paradigms did we use here?
■ Procedural, data abstractions, OOP, and GP

15Stroustrup/Programming

Styles/paradigms
template<class Cont> void draw_all(Cont& c) // C++11
{

for_each(Shape* p : c) p->draw(); // draw all shapes in c
}

void draw_all(Container& c) // C++14
{

for_each(Shape* p : c) p->draw(); // draw all shapes in c
}

■ It’s all just programming!

16Stroustrup/Programming

Some fundamentals
■ Portability is good
■ Type safety is good
■ High performance is good
■ Anything that eases debugging is good
■ Access to system resources is good
■ Stability over decades is good
■ Ease of learning is good
■ Small is good
■ Whatever helps analysis is good
■ Having lots of facilities is good

■ You can’t have all at the same time: engineering tradeoffs

17Stroustrup/Programming

Programming languages

■ Machine code
■ Bits, octal, or at most decimal numbers

■ Assembler
■ Registers, load, store, integer add, floating point add, …
■ Each new machine had its own assembler

■ Higher level languages
■ First: Fortran and COBOL

■ Rate of language invention
■ At least 2000 a decade

■ Major languages today
■ Really solid statistics are hard to come by

■ IDS: about 9 million professional programmers
■ COBOL, Fortran, C, C++, Visual Basic, PERL, Java, Javascript

■ Ada, C#, PHP, …

18Stroustrup/Programming

Early programming languages

19

Classic
C

Simula

Pascal

Algol68

BCPL

Fortran

Lisp

COBO
L

Algol6
0

PL/I

1950s: 1960s: 1970s:

Red==major commercial use
Yellow==will produce important “offspring”

Stroustrup/Programming

Modern programming languages

20

Object
Pascal

C++

Java95

C#Ada9
8

C++
98

Java0
4

C++1
1

PythonLisp Smalltal
k

Fortran77

Ada

EiffelSimula
67

COBOL8
9

PHP

C8
9

Pasca
l

PERL
Visual
Basic

COBOL0
4

Javascri
pt

Stroustrup/Programming

Why do we design and evolve languages?

■ There are many diverse applications areas
■ No one language can be the best for everything

■ Programmers have diverse backgrounds and skills
■ No one language can be best for everybody

■ Problems change
■ Over the years, computers are applied in new areas and to new problems

■ Computers change
■ Over the decades, hardware characteristics and tradeoffs change

■ Progress happens
■ Over the decades, we learn better ways to design and implement languages

21Stroustrup/Programming

First modern computer – first compiler

■ David Wheeler (1927-2004)
■ University of Cambridge
■ Exceptional problem solver: hardware, software, algorithms, libraries
■ First computer science Ph.D. (1951)
■ First paper on how to write correct, reusable, and maintainable code (1951)
■ (Thesis advisor for Bjarne Stroustrup ☺)

22Stroustrup/Programming

Early languages – 1952
■ One language for each machine

■ Special features for processor
■ Special features for “operating system”
■ Most had very assembler-like facilities

■ It was easy to understand which instructions would be generated
■ No portability of code

23Stroustrup/Programming

Fortran

■ John Backus (1924-2007)
■ IBM
■ FORTRAN, the first high level computer language to be developed.

■ We did not know what we wanted and how to do it. It just sort of grew.
■ The Backus-Naur Form (BNF), a standard notation to describe the

syntax of a high level programming language.
■ A functional programming language called FP, which advocates a

mathematical approach to programming.

24Stroustrup/Programming

Fortran – 1956
■ Allowed programmers to write linear algebra much as they

found it in textbooks
■ Arrays and loops
■ Standard mathematical functions

■ libraries
■ Users’ own functions

■ The notation was largely machine independent
■ Fortran code could often be moved from computer to computer with

only minor modification
■ This was a huge improvement

■ Arguably the largest single improvement in the history of programming
languages

■ Continuous evolution: II, IV, 77, 90, 95, 03, 08, [15]

25Stroustrup/Programming

COBOL
■ “Rear Admiral Dr. Grace Murray Hopper (US

Navy) was a remarkable woman who grandly
rose to the challenges of programming the first
computers. During her lifetime as a leader in
the field of software development concepts, she
contributed to the transition from primitive
programming techniques to the use of
sophisticated compilers. She believed that
‘we've always done it that way’ was not
necessarily a good reason to continue to do so.”

26Stroustrup/Programming

(1906-1992)

Cobol – 1960
■ Cobol was (and sometimes still is) for business programmers

what Fortran was (and sometimes still is) for scientific
programmers

■ The emphasis was on data manipulation
■ Copying
■ Storing and retrieving (record keeping)
■ Printing (reports)

■ Calculation/computation was seen as a minor matter
■ It was hoped/claimed that Cobol was so close to business

English that managers could program and programmers would
soon become redundant

■ Continuous evolution: 60, 61, 65, 68, 74, 85, 02

27Stroustrup/Programming

Lisp

■ John McCarthy (1927-2011)
■ Stanford University
■ AI pioneer

28Stroustrup/Programming

Lisp – 1960
■ List/symbolic processing
■ Initially (and often still) interpreted
■ Dozens (most likely hundreds) of dialects

■ “Lisp has an implied plural”
■ Common Lisp
■ Scheme

■ This family of languages has been (and is) the
mainstay of artificial intelligence (AI) research
■ though delivered products have often been in C or C++

29Stroustrup/Programming

Algol

■ Peter Naur (b. 1928)
■ Danish Technical University and Regnecentralen
■ BNF

■ Edsger Dijkstra (1930-2002)
■ Mathematisch Centrum, Amsterdam, Eindhoven University of

Technology, Burroughs Corporation , University of Texas (Austin)
■ Mathematical logic in programming, algorithms
■ THE operating system

30Stroustrup/Programming

Algol – 1960

■ The breakthrough of modern programming language concepts
■ Language description

■ BNF; separation of lexical, syntactic, and semantic concerns
■ Scope
■ Type
■ The notion of “general purpose programming language”

■ Before that languages were either scientific (e.g., Fortran), business (e.g.,
Cobol), string manipulation (e.g., Lisp), simulation, …

■ Never reached major non-academic use

31

Algol5
8

Algol6
0

Simula6
7

Algol6
8

PascalStroustrup/Programming

Simula 67

■ Kristen Nygaard (1926-2002) and Ole-Johan Dahl (1931-2002)
■ Norwegian Computing Center
■ Oslo University
■ The start of object-oriented programming and object-oriented design

32Stroustrup/Programming

Simula 1967
■ Address all applications domains rather then a specific domain

■ As Fortran, COBOL, etc. did
■ Aims to become a true general-purpose programming language

■ Model real-world phenomena in code
■ represent ideas as classes and class objects
■ represent hierarchical relations as class hierarchies

■ Classes, inheritance, virtual functions, object-oriented design
■ A program becomes a set of interacting objects rather than a

monolith
■ Has major (positive) implications for error rates

33Stroustrup/Programming

C■ Dennis Ritchie (1941-2011)
■ Bell Labs
■ C and helped with Unix

■ Ken Thompson (b. 1943)
■ Bell Labs
■ Unix

34

▪ Doug McIlroy (b. 1932)
▪ Bell Labs
▪ Everybody’s favorite critic,

discussion partner, and
ideas man (influenced C,
C++, Unix, and much more)

Stroustrup/Programming

Bell Labs – Murray Hill

35Stroustrup/Programming

C – 1978
■ (Relatively) high-level programming language for systems

programming
■ Very widely used, weakly checked, systems programming language
■ Associated with Unix and through that with Linux and the open source

movement
■ Direct map to hardware
■ Performance becomes somewhat portable
■ Designed and implemented by Dennis Ritchie 1974-78

36

CP
L BCPL B

C99

C++

C89
Classic C

C++9
8

Christopher Strachey, Cambridge, mid-1960s
Martin Richards, Cambridge, 1967

Ken Thompson, BTL, 1972

Stroustrup/Programming

Dennis Ritchie, BTL, 1974

C++1
1

Bjarne Stroustrup, BTL, 1985

C11

C++

■ Bjarne Stroustrup
■ AT&T Bell labs
■ Texas A&M University
■ making abstraction techniques affordable and manageable

for mainstream projects
■ pioneered the use of object-oriented and generic

programming techniques in application areas where
efficiency is a premium

37Stroustrup/Programming

My ideals – in 1980 and more so in 2013

■ “To make life easier for the serious programmer”
■ i.e., primarily me and my friends/colleagues

■ I love writing code
■ I like reading code
■ I hate debugging

■ Elegant and efficient code
■ I really dislike choosing between the two
■ Elegance, efficiency, and correctness are closely related in

many application domains
■ Inelegance/verbosity is a major source of bugs and inefficiencies

38Stroustrup/Programming

C++ – 1985

■ C++ is a general-purpose programming language
with a bias towards systems programming that
■ is a better C
■ supports data abstraction
■ supports object-oriented programming
■ supports generic programming

39

Classic
C

Simula
67

C++C with
Classes

C++98
ARM
C++

1979-84

1978-89

1989

Stroustrup/Programming

C++11

C++14

More information
■ More language designer links/photos

■ http://www.angelfire.com/tx4/cus/people/
■ A few examples of languages:

■ http://dmoz.org/Computers/Programming/Languages/
■ Textbooks

■ Michael L. Scott, Programming Language Pragmatics, Morgan
Kaufmann, 2000, ISBN 1-55860-442-1

■ Robert W. Sebesta, Concepts of programming languages,
Addison-Wesley, 2003, ISBN 0-321-19362-8

■ History books
■ Jean Sammet, Programming Languages: History and

Fundamentals, Prentice-Hall, 1969, ISBN 0-13-729988-5
■ Richard L. Wexelblat, History of Programming Languages,

Academic Press, 1981, ISBN 0-12-745040-8
■ T. J. Bergin and R. G. Gibson, History of Programming Languages

– II, Addison-Wesley, 1996, ISBN 0-201-89502-1

40Stroustrup/Programming

