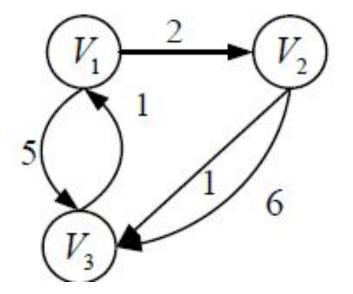
Поиск пути наименьшей длины


Поиск расстояния между всеми парами вершин. Алгоритм Уоршалла-Флойда

Вход: матрица С длин дуг.

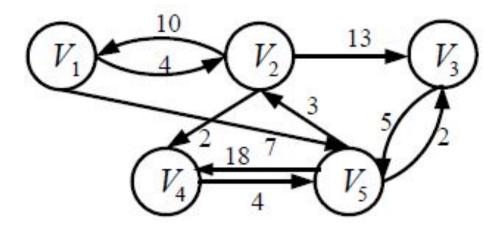
Выход: матрица Т длин путей и матрица Н самих путей.

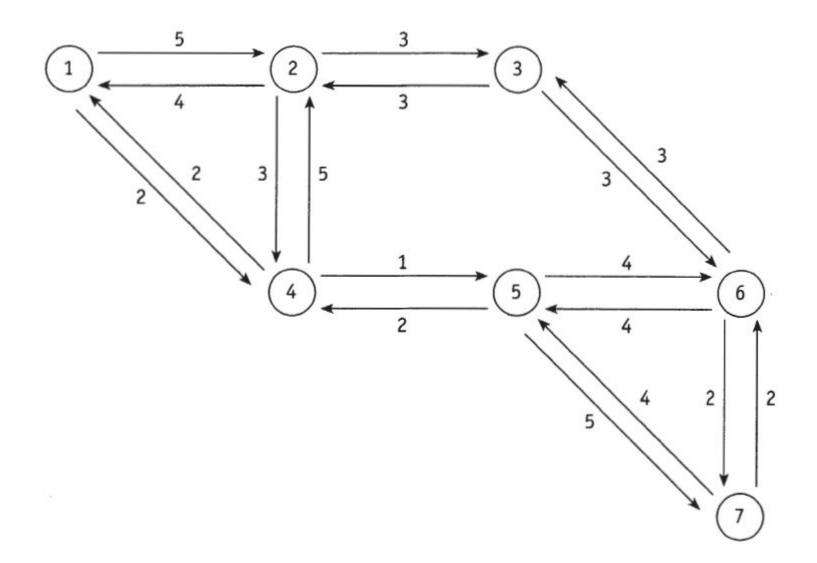
```
for г from 1 to p do
    for j from 1 to p do
        T[i,j] = C[i,j] { инициализация }
        if C[i,j] = ∞ then H[i, j] = 0 { нет дуги из і в ј }
        else H[i,j]: =j
    end
end
```

```
for i from 1 to p do
 for j from 1 to p do
   for k from 1 to p do
     if i \neq j \& T[j, i] \neq \infty \& i \neq k \& T[i,k] \neq \infty \&
              (T[j, k] = \infty V T[j, k] > T[j,i] + T[i,k])
      then H[j,k] = H[j,i] \{ запомнить новый путь \}
            T[j,k]: = T[j, i] + T[i, k] { и его длину }
    end
  end
 for j from 1 to p do
    if T[j,j]<0 then stop { нет решения}
  end
end
```

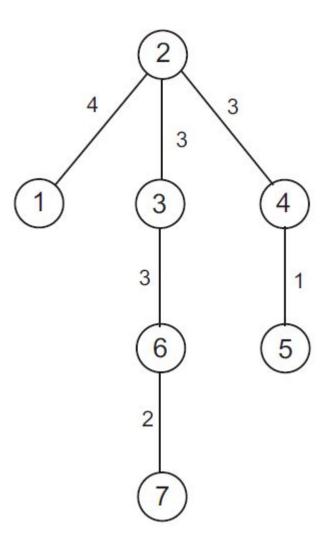

D (3)	V_{i}	V_2	V_3
V_1	4	2	3
V_2	2	4	1
V_3	1	3	4

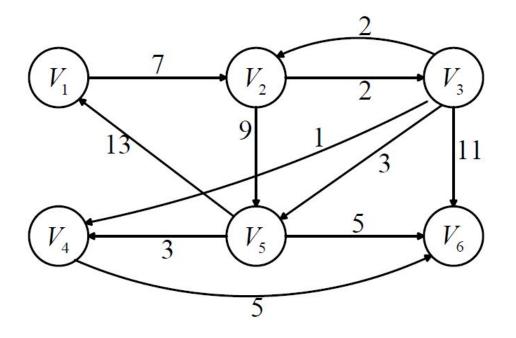
Пусть $G = \langle V, E \rangle - взвешенный орграф без петель. Поиск пути наименьшей длины между вершинами <math>s$ (начало) и t(конец).


Алгоритм Дейкстры


```
Вход: орграф G(V,E), заданный матрицей длин дуг С рхр
s и t — вершины графа.
Выход: векторы Т и Н длиной р.
Если вершина v лежит на кратчайшем пути от s к t,
то T[v] — длина кратчайшего пути от s к v;
H[v] — вершина, непосредственно предшествующая v на
кратчайшем пути.
for v from 1 to p do
  T[v] = ∞ { кратчайший путь неизвестен }
  X[v] = 0 { все вершины не отмечены }
end
```

```
H[s]: = 0; T[s]: = 0; X[s] = 1
v = s { текущая вершина }
М: { обновление пометок }
for u in \Gamma(v) do
 if X[u] = 0 \& T[u] > T[v] + C[v, u]
     then T[u]=T[v]+C[v,u] { найден более короткий путь }
          H[u] = v \{ запоминаем его \}
end
m = ∞; v=0 { поиск конца кратчайшего пути }
for u from 1 to p do
  if X[u] = 0 \& T[u] < m
      then v = u; m: = T[u]
end
if v = 0 then
  stop { Het пути из s B t }
if v = t then stop { найден кратчайший путь из s в t }
X[v] = 1 \{ найден кратчайший путь из s в v \}
goto M
```


Пример



Отмеченные		Расстояние до вершины						Неотмеченные
вершины	1	2	3	4	5	6	7	вершины
2	4	0	3	3	∞	∞	∞	1, 3, 4, 5, 6, 7
3	4	0	3	3	∞	6	∞	1, 4, 5, 6, 7
4	4	0	3	3	4	6	∞	1, 5, 6, 7
5	4	0	3	3	4	6	9	1, 6, 7
1	4	0	3	3	4	6	9	6, 7
6	4	0	3	3	4	6	8	7
7	4	0	3	3	4	6	8	

Используя Алгоритм Дейкстры найти минимальный путь и длину:

- 1) от вершины V_2 до вершины V_4 ;
- 2) от вершины V_1 до вершины V_5 ;
- 3) от вершины V_1 до вершины V_4 .

Алгоритм Беллмана-Форда

За 1 доллар США можно купить О. 7292 евро.

За 1 евро можно купить 105.374 японской иены.

За 1 японскую иену можно купить 0.3931 российского рубля.

За 1 российский рубль можно купить 0.0341 доллара США.

Кормен, Томас Х.

Алгоритмы: вводный курс.

М.: ООО "И.Д. Вильямс", 2014.