ПЕРВИЧНАЯ ПЕРЕРАБОТКА НЕФТИ

План Лекции

- 1. Назначение первичной переработки нефти.
- Общие сведения о первичной переработке нефти.
- 3. Фракционный состав нефти.
- 4. Физико-химические основы процесса ректификации.
- 5. Принцип работы ректификационной колонны.
- 6. Установки первичной переработки нефти.
- 7. Материальный баланс установок первичной переработки нефти и использование дистиллятов.
- 8. Математическое моделирование и оптимизация

Назначение первичной переработки нефти

Из нефти, поступающей промысловой установок подготовки на нефтеперерабатывающий завод, получают широкий спектр различной продукции бензины, (высокооктановые дизельные топлива, авиационные керосины, битумы, масла, котельные топлива и Ho другое). многое предварительно нефть должна быть разделена на фракции составляющие, различающиеся температурам кипения ПО (дистилляты). Для этого на НПЗ существуют установки первичной переработки нефти.

Общие сведения о первичной переработке нефти

• Установки первичной переработки нефти составляют основу всех нефтеперерабатывающих заводов, от работы этих установок зависят качество и выходы получаемых компонентов топлив, а также сырья для вторичных и других процессов переработки нефти. На Омском НПЗ действуют установки первичной переработки нефти ABT-6, ABT-7, ABT-8, AT-9, ABT-10

• Фракционный состав является важным показателем качества нефти. В процессе перегонки при постепенно повышающейся температуре из нефти ТОКНОТТО фракции, части отличающиеся друг от друга пределами выкипания. «Разгонка» нефти на фракции ректификационной осуществляется в колонне.

Температуры кипения, ºС	Фракция	
Менее 32	Углеводородные газы	
32-180	Бензиновая	
180-240	Керосиновая	
240-350	Дизельная	
350 - 500	Мазут	
Выше 500	Гудрон	

• Нефть «разгоняют» до температур 300-350 °C при атмосферном давлении (атмосферная перегонка) и до 500 - 550 °С под вакуумом(вакуумная перегонка). Все фракции, выкипающие до 300-350 °С, называют *светлыми*. Остаток после отбора светлых дистиллятов (выше 350 °C) называют *мазутом*. Мазут разгоняют под вакуумом.

Наименование фракции	Где отбирается	Где используется
Бензиновая	Атмосферная перегонка	Используется после очистки как компонент товарного автобензина и как сырьё каталитического риформинга (получение высокооктановых бензинов), пиролиза (получение олефинов, ароматики) и др.
Керосиновая	Атмосферная перегонка	После очистки используется как топливо реактивных авиационных двигателей, для освещения и технических целей
Дизельная	Атмосферная перегонка	После очистки используется как топливо для дизельных двигателей
Мазут	Атмосферная перегонка (остаток)	Используется в качестве котельного топлива или как сырьё для термического крекинга; для получения масел.
Вакуумный газойль	Вакуумная перегонка	Сырье процессов каталитического крекинга, гидрокрекинга, компонент товарных мазутов
Гудрон	Вакуумная перегонка (остаток)	Сырье процессов коксования, гидрокрекинга

Физико-химические основы процесса ректификации

Разделение процесса на фракции происходит посредством процесса *ректификации*.

Ректификацией называется массообменный процесс разделения жидких смесей на чистые компоненты, различающиеся температурам ПО противоточного кипения, **3**a счет многократного контактирования паров жидкости.

Физико-химические основы процесса ректификации

• Ректификацию можно проводить периодически или непрерывно. Ректификацию проводят в башенных колонных аппаратах (до 60 м высотой), снабженных контактными устройствами (тарелками или насадкой) **ректификационных**

КОПОННЯ ЗАДки: насадка, заполняющая колонну, может представлять собой металлические, керамические, стеклянные и другие элементы различной формы

Расположение тарелок внутри ректификационных колоннах

• Место ввода в ректификационную колонну нагретого перегоняемого сырья называют *питательной секцией* (зоной), где осуществляется однократное испарение.

• Часть колонны, расположенная выше Питательная питательной секции, служит для ректификации парового потока и называется концентрационной (укрепляющей), а другая – нижняя часть, в которой осуществляется ректификация жидкого потока, — отгонная секцией.

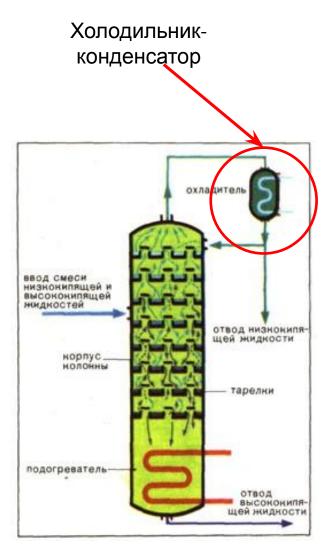
я выше Питательная секция и ой княя смесь смесь

кубовая) часть колонны

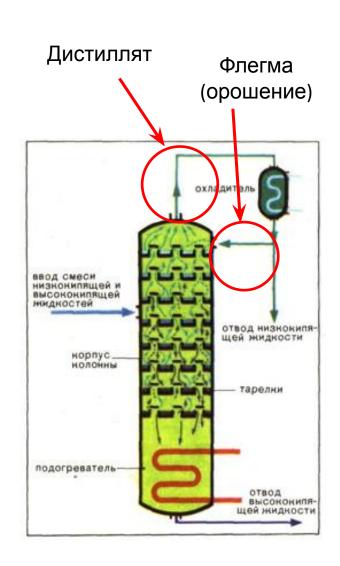
Укрепляющая

часть колонны

Исходная смесь (нефть), нагретая до температуры питания в паровой, парожидкостной или жидкой фазе поступает в колонну в качестве питания. Зона, в которую подаётся питание называют


эвапарационной, так как там происходит процесс

эвапарации - однократного отделения г жидкости.



охладитель

Пары поднимаются в верхнюю часть колонны, охлаждаются и конденсируются в холодильникеконденсаторе и подаются обратно на верхнюю тарелку колонны в качестве орошения. Таким образом в верхней части колонны (укрепляющей) противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз).

Стекая вниз по тарелкам жидкость обогащается высококипящим (высококипящими) компонентами, а пары, чем выше поднимаются в верх колонны, тем более обогащаются легкокипящими компонентами. Таким образом, отводимый с верха колонны продукт обогащен легкокипящим компонентом. Продукт, отводимый с верха колонны, называют **дистиллятом**. Часть дистиллята, сконденсированного в холодильнике и возвращенного обратно в колонну, называют **орошением или флегмой**.

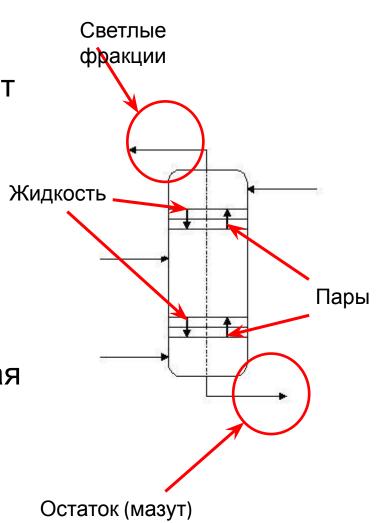
Кубовая часть

колонны

Теплообменник

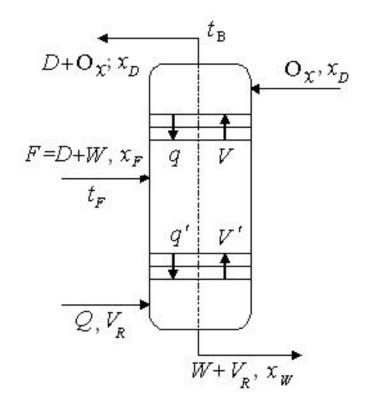
(подогреватель)

• Для создания восходящего потока паров в *кубовой* (нижней, отгонной) части ректификационной колонны часть кубовой жидкости направляют в теплообменник, образовавшиеся парь подают обратно под нижнюю тарелку


колонны.

ввод смеси низнонипящей и высононипящей нидкостей норпус нолонны

ТВОД НИЗКОКИПЯ-ОЙ ЖИДКОСТИ


тарелни

- В работающей ректификационной колонне через каждую тарелку проходят 4 потока:
- 1) жидкость флегма, стекающая с вышележащей тарелки;
- 2) пары, поступающие с нижележащей тарелки;
- 3) жидкость флегма, уходящая на нижележащую тарелку;
- 4) пары, поднимающиеся на вышележащую тарелку.

При установившемся режиме работы колонны уравнение материального баланса представляется в следующем виде:

F=D+W, тогда для низкокипящего компонента $F \cdot x_F = D \cdot x_D + W \cdot x_W$.

$$Fx_F = Dx_D + (F - D)x_W$$

$$D = \frac{(x_F - x_W)}{x_D - x_W} F$$

$$W = \frac{x_F - x_D}{x_W - x_D} F$$

Флегмовое число (R)

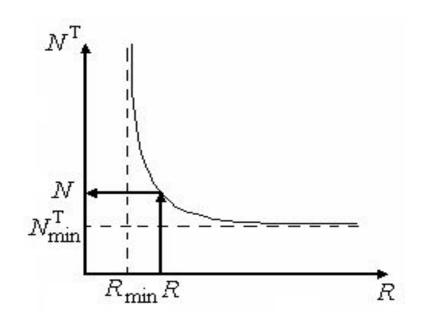
• соотношение жидкого и парового потоков в концентрационной части колонны (R = L/D; L и D – количество флегмы и ректификата).

Паровое число (П)

• отношение контактируемых потоков пара и жидкости в отгонной секции колонны (П = G / W; G и W – количество

соответственно паров и ку

остатка).



Теоретическая тарелка

• При количественном рассмотрении работы ректификационных колонн обычно используется концепция *теоретической тарелки*. Под такой тарелкой понимается гипотетическое контактное устройство, в котором устанавливается термодинамическое равновесие между покидающими его потоками пара и жидкости.

Число тарелок

определяется числом теоретических тарелок, обеспечивающим заданную четкость разделения при принятом флегмовом (и паровом) числе, а также эффективностью контактных устройств (обычно КПД реальных тарелок или удельной высотой насадки, соответствующей одной теоретической тарелке).

Четкость погоноразделения

• В нефтепереработке в качестве достаточно высокой разделительной способности колонны перегонки нефти на топливные фракции считается налегание температур кипения соседних фракций в пределах 10–30° С (косвенный показатель четкости

Бензиновая фракция: температура кипения 32-180 °C

Масляная фракция: температура кипения

разлепения

Особенности нефти как сырья процессов перегонки

• Невысокая термическая *стабильность* нефти, ее высококипящих фракций (≈350-360 °C). Поэтому необходимо ограничение температуры нагрева (для повышения относительной летучести – перегонка под вакуумом, перегонка с водяным паром – для отпаривания более легких фракций). С этой целью используют, как минимум, две стадии: атмосферную перегонку до мазута (до 350 °C) и перегонку под вакуумом.

Особенности нефти как сырья процессов перегонки

- Нефть многокомпонентное сырье с непрерывным характером распределения фракционного состава и соответственно летучести компонентов.
- Поэтому в нефтепереработке отбирают широкие фракции (°С): бензиновые; керосиновые; дизельные; вакуумный газойль; гудрон.
- Иногда ограничиваются неглубокой перегонкой нефти с получением остатка (мазута, выкипающего выше 350 °C).

Особенности нефти как сырья процессов перегонки

• Высококипящие и остаточные фракции нефти содержат значительное количество гетероорганических смолистоасфальтеновых соединений и металлов (ухудшают товарные характеристики продуктов и усложняют дальнейшую переработку дистиллятов).

Установки первичной переработки нефти

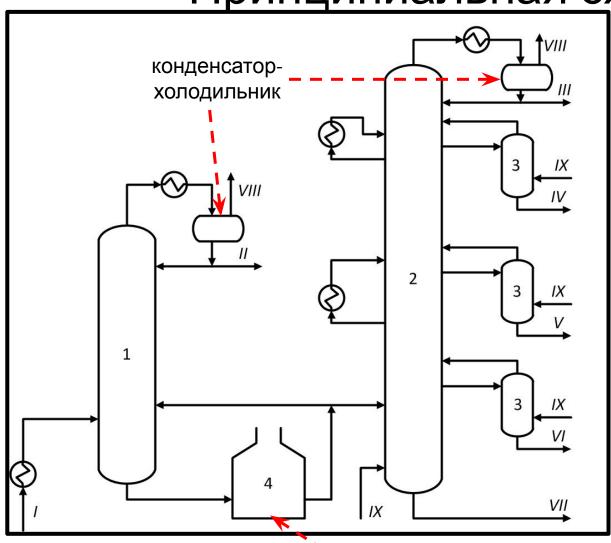
- Ректификационные установки по принципу действия делятся на *периодические* и *непрерывные*.
- В установках **непрерывного действия** разделяемая сырая смесь поступает в колонну и продукты разделения выводятся из нее непрерывно.
- В установках **периодического действия** разделяемую смесь загружают в куб одновременно и ректификацию проводят до получения продуктов заданного конечного состава.

Способы регулирования температурного режима ректификационных колонн

 Регулирование теплового режима – отвод тепла в концентрационной (укрепляющей) зоне, подвод тепла в отгонной (исчерпывающей) секции колонн и нагрев сырья до оптимальной температуры.

Установки первичной переработки нефти

- Ректификацию осуществляют на трубчатых установках:
- атмосферная трубчатая установка (АТ);
- вакуумная трубчатая установка (ВТ);
- атмосферно-вакуумная трубчатая установка (АВТ).


Установки первичной переработки нефти.

Атмосферная трубчатая установка (АТ)

- Является наипростейшей схемой первичной перегонки нефти.
- На установках АТ осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракций и мазута.

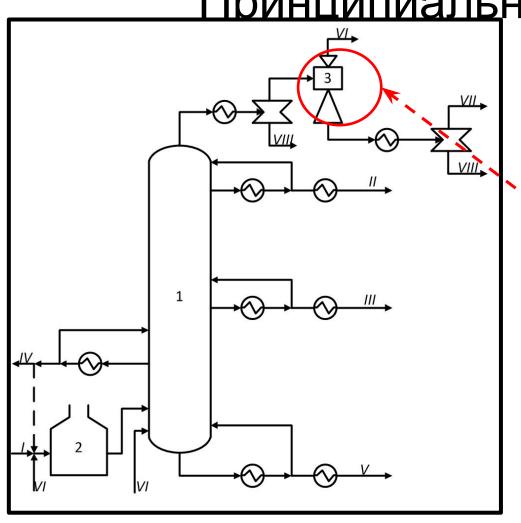
установки первичнои перерафотки нефти.

Принципиальная схема АТ

Для перегонки легких нефтей и фракций до 350 °С (І) применяют АТ: установки предварительной отбензинивающей колонной (1) и сложной ректификационной колонной (2)боковыми отпарными (3) секциями ДЛЯ разделения частично отбензиненной нефти на топливные фракции (III, IV, V, VI) и мазут (VII).

Материальный баланс АТ

Поступило, %				
Нефть	100			
Получено, % на нефть				
Газ и нестабильный бензин (н.к180 ^⁰ C)	19,1			
Фракции				
180-220ºC	7,4			
220-280ºC	11,0			
280-350ºC	10,5			
Мазут	52,0			
Технологический режим				
Колонна частичного отбензинивания нефти	Атмосферная колонна			
Температура питания 205 С	Температура питания 365⁰С			
Температура верха 155 ⁰С	Температура верха 146°C			
Температура низа 240⁰С	Температура низа 342⁰С			
Лавпение 0 5 МПа	Лавпение 0 25 МПа			


установки первичной переработки нефти.

Вакуумные трубчатые установки (BT) • Установки ВТ предназначены для перегонки

- Установки ВТ предназначены для перегонки мазута.
- При вакуумной перегонке из мазута получают вакуумные дистилляты, масляные фракции и тяжелый остаток *гудрон*.
- Полученный материал используется в качестве сырья для получения масел, парафина, битумов. Остаток (концентрат, гудрон) после окисления может быть использован в качестве дорожного и строительного битума или в качестве компонента котельного топлива.

Установки первичной переработки нефти.

Принципиальная схема ВТ

отбираемый Мазут, низа атмосферной колонны блока АТ прокачивается параллельными потоками через печь 2 в вакуумную колонну 1. Смесь нефтяных водяных поступают паров <u>вакуумсоздающую систему</u>. После конденсации И охлаждения конденсаторе-холодильнике она разделяется в газосепараторе на газ жидкость. Газы отсасываются вакуумным насосом 3, а конденсат поступает в отстойник для отделения нефтепродуктов OT водяного боковым конденсата. Верхним погоном отбирают фракцию легкого вакуумного газойля (соляра) (II), вторым боковым погоном - широкую газойлевую фракцию (масляную) (III), C HINDS KULUPINI UTUNDATUS LYUDUN

материальный баланс вт		
Поступило, %		
Поступило, % на нефть		
Мазут	52	

Получено, % на нефть

Легкий вакуумный газойль

Вакуумный газойль

Гудрон

Температура питания, ∘С

Давление наверху абс., кПа

Температура верха, ∘С

Температура низа, ∘С

Верхняя часть

Средняя часть

Нижняя часть

Технологический режим в вакуумной колонне

Характеристика вакуумной колонны

Диаметр, м

6,4

9,0

4,5

1,2

22,0

28,8

395

125

352

8,0

Число тарелок

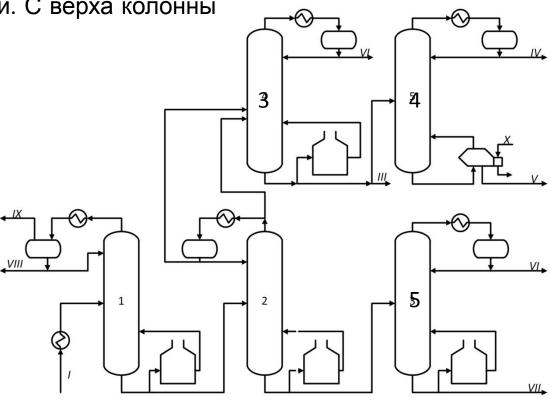
4

10

4

Материальнь	ый бала	нс ВТ

нефти.


Атмосферно-вакуумная трубчатая установка (ABT)

- Атмосферные и вакуумные трубчатые установки (АТ и ВТ) строят отдельно друг от друга или комбинируют в составе одной установки (АВТ).
- АВТ состоит из следующих блоков:
- блок обессоливания и обезвоживания нефти;
- блок атмосферной и вакуумной перегонки нефти;
- блок стабилизации бензина;
- блок вторичной перегонки бензина на узкие фракции.

Принципиальная схема блока стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6

Прямогонные бензины после стабилизации сначала разделяются на 2 промежуточные фракции н.к.-105°С и 105-180 °С, каждая из которых в дальнейшем направляется на последующее разделение на узкие целевые фракции. Нестабильный бензин из блока АТ поступает в колонну стабилизации. С верха колонны 1 отбираются сжиженные газы.

Из стабильного бензина в колонне 2 отбирают фракцию н.к.-105 ºС. В колонне 3 происходит разделение на фракции н.к.-62 °С и 62-105 °С. происходит B колонне дальнейшее разделение на фракции 62-85 °C (бензольная) и направляют колонны колонну 5 разделение в на фракции 105-140 °C и 140-180 °C.

Технологический режим и характеристика ректификационных колонн блока стабилизации и

ВТОПИЧНОЙ ПЕПЕГОНКИ

Показатель	Номер колонны						
	1	2	3	4	5		
Температура <i>,</i> ºС							
Питания	145	154	117	111	150		
Верха	75	134	82	96	132		
Низа	190	202	135	127	173		
Давление, МПа	1,1	0,45	0,35	0,20	0,13		
Число тарелок	40	60	60	60	60		

Материальный баланс блока стабилизации и вторичной перегонки бензина

Поступило, % на нефть:	
Нестабильный бензин	19,1
Получено, % на нефть	
Сухой газ (C ₁ -C ₂)	0,2
Сжиженный газ (C ₂ -C ₄)	1,13
Фракция С _₅ -62 ºС	2,67
Фракция 62-105	6,28
Фракция 105-140	4,61
Фракция 140-180	4,21

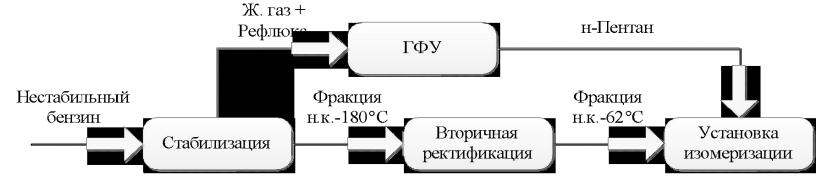
Расходные показатели установки ЭЛОУ-АВТ-6

• На 1 тонну перерабатываемой нефти:

Топливо жидкое, кг	33,4
Электроэнергия, кВт⋅час	10,4
Вода оборотная, м ³	4,3
Водяной пар (1 МПа), кг	1,1

- Общий материальный баланс: выход (% мас.) всех конечных продуктов перегонки от исходной нефти, количество которой принимают за 100 %.
- Поступенчатый баланс: за 100 % принимают выход (% мас.) продуктов перегонки на данной ступени (продукты могут быть промежуточные).

Принципиальная технологическая схема ЭЛОУ-АВТ


- Нефть (I) (100 %) поступает на установку с содержанием минеральных солей от 50–300 мг/л и воды 0,5–1,0 % (мас.)
- Углеводородный газ (II). В легкой нефти (р = 0,80–0,85) 1,5–1,8 % (мас.). Для тяжелой 0,3–0,8 % (мас.)
- Сжиженная головка стабилизации бензина (IV) содержит пропан и бутан с примесью пентанов (0,2–0,3 % мас.), используется для бытовых нужд (сжиженный газ) или в качестве газового моторного топлива для автомобилей (СПБТЛ или СПБТЗ).

- Легкая головка бензина (V) фракция бензина Н.К. (начало кипения) 85 °C (4–6 % мас.); О.Ч.М (октановое число по моторному методу) не более 70.
- Бензиновая фракция (VI) 85–180 °C. Выход ее от нефти в зависимости от фракционного состава обычно составляет 10–14 % мас. Октановое число (О.Ч.М = 45–55).
- Керосин (X): 1) отбор авиационного керосина фракция 140–230 °C (выход 10–12 % мас.); 2) компонент зимнего или арктического дизельного топлива (фракции 140–280 или 140–300 °C), выход 14–18 % (мас.)

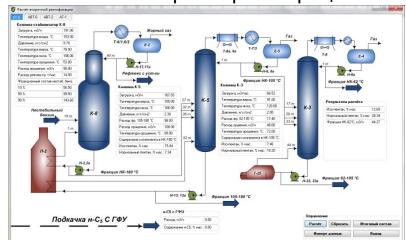
- Дизельное топливо (XI) атмосферный газойль 180–350 °C (выход 22–26 % мас., если потоком (X) отбирается авиакеросин или 10–12 % (мас.), если потоком (X) отбирается компонент зимнего или арктического дизельного топлива.
- Легкая газойлевая фракция (XIV) (выход 0,5–1,0 % мас.
- Легкий вакуумный газойль (XV) фракция 240–380 °С, выход этой фракции составляет 3–5 % мас.

• Первичная прямая перегонка нефти даёт сравнительно мало бензина (выход от 4 до 25 %). Увеличение выхода бензина достигается применением вторичной переработки более тяжёлых нефтяных фракций, а также мазута с помощью деструктивных методов.

Математическое моделирование и оптимизация процесса ректификации

Нестабильный бензин поступает на блок стабилизации для отделения жирного газа и рефлюкса, направляемых на газофракционирующую установку (ГФУ) для дальнейшей переработки. Фракция н.к.-62°С отделяется на стадии вторичной ректификации и поступает в качестве сырья на установку изомеризации пентан-

Парамотр	ЭЛОУ-АВТ-6			ЭЛОУ-АТ-6			ЭЛОУ-АВТ-2		
Параметр	K-8	К-3	K-5	К-8	K-5	К-3	K-4	K-9	K-10
Т верха, °С	79.0	101.0	101.0	79.9	104.6	86.9	77.0	83.0	94.5
Т низа, °С	189.0	173.0	150.0	184.8	165.1	119.4	175.0	144.0	140.0
Давление, кгс/см ²	8.5	3.0	1.0	9.4	2.2	2.1	8.2	1.7	0.6
Расход входного потока, м³/ч	190.0	216.0	159.0	148.8	158.1	58.1	100.0	105.0	68.0
Расход орошения, м³/ч	131.0	138.0	99.0	113.1	99.6	55.4	44.0	56.0	49.0
Расход нижнего продукта, м³/ч	216.0	159.0	112.0	158.1	77.5	27.6	105.0	68.0	58.0


Расчет процесса стабилизации и вторичной ректификации прямогонной бензиновой фракции

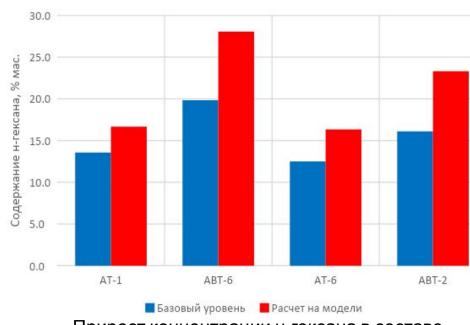
Для описания сложной химико-технологической системы в комплексе использован метод математического моделирования физико-химических закономерностей реакционных и ректификационных процессов. Расчёт блока стабилизации и вторичной ректификации бензинов проведён с использованием программного пакета Aspen HYSYS. Исходными данными для расчёта являются фракционный состав нестабильного бензина, конструктивные характеристики оборудования, а технологические колонного также параметры процесса

ректификаниебыя зинавый франций ранций 1800. проведён расчёт изменения содержания ключевых компонентов (H-пентана и H-гексана) в сырье процесса изомеризации в зависимости от фракционного состава. Полученная функциональ-ная зависимость имеет следующий вид: $X_1 + D_2 \cdot X_2 + \dots + D_{15} \cdot X$

где Y — 16 одержание компонента в составе сырья, % мас.; b_1 , b_2 ,... b_{15} — коэффициенты при независимых переменных;

 X_1 , X_2 , ..., X_{15} — температуры начала кипения, выкипания 10%, 15%, конца кипения соответственно.

Диалоговое окно комплексной модели процесса изомеризации


Оптимизация состава фракции н.к.-62°C

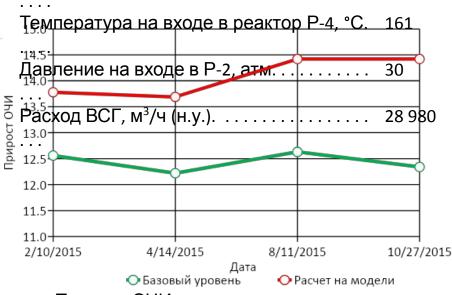
Оптимизация работы колонн блока вторичной ректификации позволяет повысить содержание ключевых компонентов процесса изомеризации легких бензиновых фракций ($H-C_{\varsigma}$ и $H-C_{\varsigma}$).

Содержание углеводородов $H-C_5$ и $H-C_6$ в составе фракции H.K.-62°C

	Содержание компонента, % мас.						
Дата	н-пе	нтан	н-гексан				
	базовый уровень	расчет на модели	базовый уровень	расчет на модели			
AT-1							
12.02.2015	28.58	28.64	13.52	16.60			
12.04.2015	28.62	28.68	10.81	13.27			
12.08.2015	30.33	30.39	12.39	15.21			
12.10.2015	26.62	26.67	17.53	21.52			
ABT-6							
04.02.2015	30.06	30.89	19.06	26.94			
01.04.2015	27.77	28.54	18.17	25.69			
05.08.2015	26.57	27.31	21.37	30.22			
07.10.2015	28.76	29.56	20.77	29.36			
		AT-6					
14.03.2015	39.80	39.92	11.16	14.57			
14.05.2015	37.70	37.81	10.90	14.23			
14.07.2015	34.81	34.91	14.03	18.32			
21.10.2015	33.94	34.04	13.93	18.19			
ABT-2							
09.02.2015	30.38	30.44	16.50	23.87			
08.04.2015	34.61	34.68	15.01	21.71			
12.08.2015	31.00	31.06	15.38	22.26			
12.10.2015	28.53	28.59	17.53	25.36			

Оптимизация состава фракции н.к.-62°C

Прирост концентрации н-гексана в составе фракции н.к.-62°C


В соответствии проведенными работы расчетами, при оптимизации ректификационных блока колонн стабилизации и вторичной ректификации прирост ОЧИ изомеризата на выходе с установки увеличивается на 1,2 – 2 пункта.

Расчет процесса изомеризации легких бензиновых фракций был проведен при постоянных технологических условиях:

Расход сырья на блок изомеризации, 90 $M^{3}/4..$

Температура на входе в реактор P-2, °C.

Температура на входе в реактор P-3, °C. 149

Прирост ОЧИ изомеризата на выходе с установки