Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (приволжский) федеральный университет» Набережночелнинский институт (филиал)

Численное интегрирование на платформе .Net

THE BEPCHTE

Выполнили Гордеев С.В. и Шайхутдинов И.Ф. научный руководитель Мингалеева Л.Б

Объект исследования: Вычисление определенных интегралов

Предмет исследования: Приближенные методы решения определенных интегралов с использованием современных информационных технологий. В частности, базирующихся на платформе .Net Framework.

Актуальность исследования: Без интегралов было бы невозможно возведение крупных объектов (например, мостов), использование самолётов и прочих привычных вещей, при создании которых проводятся сложные расчёты.

Цель работы: рассмотреть методы решения численного интегрирования на платформе .Net

Задачи:

- 1)проанализировать методы решения интегралов
- 2)разработать и реализовать алгоритмы решения интегралов в различных программных средах
- 3) анализ методов решения интегралов и выбор наилучшего метода

	Достоинства	Недостатки
Excel	 Практически неограниченные размеры таблиц Наличие большого кол-ва формул для математических операций 	• При некорректном написании формул , пользователю самому приходится выявлять ошибку
C#	• Компонентно-ориентированный подход к программированию, способствующий меньшей машинно-архитектурной зависимости результирующего программного кода, гибкости, переносимости и легкости повторного использования (фрагментов) программ	• Необходимость избыточной спецификации типов данных в передаваемых сообщениях, а так же наличие жестких ограничений на типы передаваемых данных;

Методы численного интегрировани я

Существует несколько методов для вычисления определенного интеграла:

- Метод прямоугольников
- •Метод трапеций
- Метод Симпсона (метод парабол)

Метод прямоугольников

Метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Достоинства и недостатки метода прямоугольников

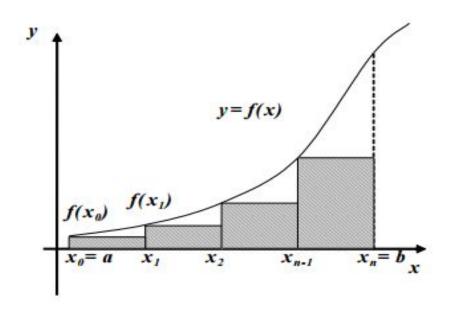
Высокая погрешность; для достижения высокой точности расчета приходится сильно "мельчить" шаг интегрирования, что приводит к сильному увеличению временных затрат.

Метод прямоугольников

На каждом отрезке [x_i , x_{i+1}], i = $\mathbf{0}$, $\mathbf{1}$, $\mathbf{2}$..., n— $\mathbf{1}$ функция f(x) заменяется полиномом нулевой степени $P_0(x)$ = $f(x_i)$.

Поэтому приближенно / вычисляется по формуле:

$$I = \sum_{i=0}^{n-1} f(x_i)(x_{i+1} - x_i)$$



Метод прямоугольников

Для равноотстоящих узлов формула имеет следующий

вид:

$$I = h \sum_{i=0}^{n-1} f(x_i), h = x_{i+1} - x_i$$

Или

$$I = h \sum_{i=0}^{n-1} f(x_i)$$

Метод прямоугольников

Для равноотстоящих узлов формула имеет следующий вид:

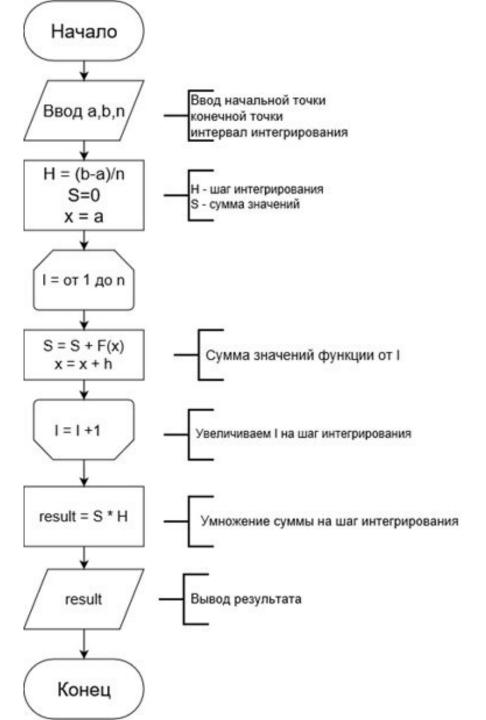
$$I = h \sum_{i=0}^{n-1} f(x_i), h = x_{i+1} - x_i$$
 (1)

Или

$$I = h \sum_{i=0}^{n-1} f(x_i)$$
 (2)

Формулу (1) называют формулой левых прямоугольников, а (2) – правых прямоугольников.

Алгоритм метода прямоугольников



Метод трапеций

Метод численного интегрирования функции одной переменной, заключающийся в замене на каждом элементарном отрезке подынтегральной функции на многочлен первой степени, т.е. на линейную функцию.

Достоинства и недостатки метода трапеций

Метод трапеций

В этом методе на каждом отрезке $[x_i, x_{i+1}]$ функция f(x) заменяется полиномом 1-й степени $P_1(x)$.

По формуле Лагранжа:

$$P_1(x) = f(x_i) \frac{x - x_{i+1}}{x_i - x_{i+1}} + f(x_{i+1}) \frac{x - x_i}{x_{i+1} - x_i}$$

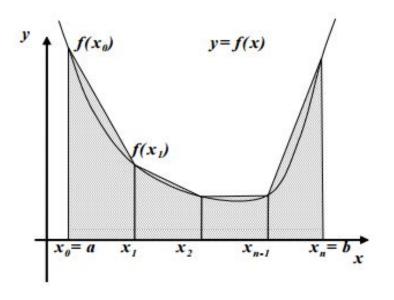
Интегрируя $P_1(x)$ на отрезке $[x_i, x_{i+1}]$ получим:

$$\int_{x_i}^{x_{i+1}} P_1(x) dx = \frac{1}{2} (f(x_i) + f(x_{i+1}))(x_{i+1} - x_i)$$

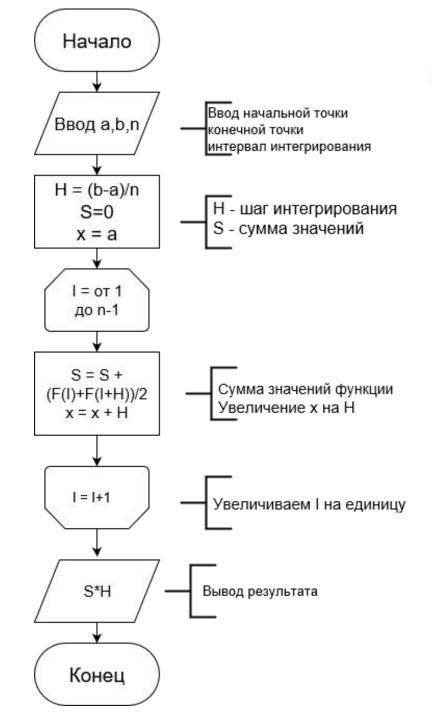
Метод трапеций

Суммируя по всем i (i = 0, 1, 2 ..., n-1), получим формулу трапеций:

$$I = \frac{1}{2} \sum_{i=0}^{n-1} (f(x_i) + f(x_{i+1}))(x_{i+1} - x_i)$$



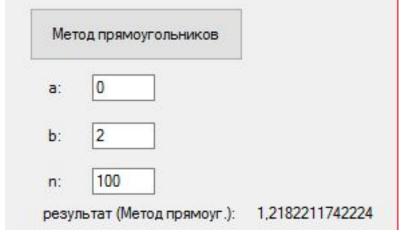
Алгоритм метода трапеций



Метод прямоугольн иков в excel

Α	В	С	E	F
x(i)	x(i)+h/2	f(x+h/2)	h	
0	0,0625	0,000122	0,125	
0,125	0,1875	0,003295		1,235251935
0,25	0,3125	0,015241		
0,375	0,4375	0,04168		
0,5	0,5625	0,087896	Интеграл:	h*(f(x1+h/2)++f(x15+h/2))
0,625	0,6875	0,15812		
0,75	0,8125	0,254674		
0,875	0,9375	0,377174		
1	1,0625	0,522275		
1,125	1,1875	0,68429	***	
1,25	1,3125	0,856561		
1,375	1,4375	1,032928		
1,5	1,5625	1,208705		
1,625	1,6875	1,380939		
1,75	1,8125	1,548164		
1,875	1,9375	1,709953		
2			Значение интеграла:	1,235251935

Код метода прямоугольн иков на языке С#

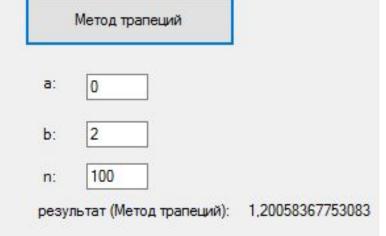


Метод трапеций в excel

X	f(x)	Коэф с(і)	cf(x)	h	1	
0	0	0,5	0	0,125		h=(b-a)/16
0,125	0,000977	1	0,000977			x(i)=a+i*h
0,25	0,007809	1	0,007809			$f(x)=x^3/KOPEHb(x^4+4)$
0,375	0,026302	1	0,026302			cf(x(i))=f(x)*c(i)
0,5	0,062017	1	0,062017			
0,625	0,119807	1	0,119807			
0,75	0,203059	1	0,203059			
0,875	0,312823	1	0,312823			
1	0,447214	1	0,447214			
1,125	0,60158	1	0,60158			
1,25	0,769555	1	0,769555			
1,375	0,944566	1	0,944566			
1,5	1,121114	1	1,121114			
1,625	1,295387	1	1,295387			
1,75	1,465223	1	1,465223			
1,875	1,629736	1	1,629736			
2	1,788854	0,5	0,894427			
			9,901595		Значение интеграла:	1,237699369

Код метода трапеций на языке С#

```
public double TrapezMethod(double a, int b,int n)
        double s = 0;
        double h = (b - a) / n;
        double x = a;
        for (int i = 1; i < n-1; i++)
            x = x + h;
             s = s + (F(x) + F(x + h)) / 2;
        return s * h;
                                    Метод трапеций
```



Заключение

В данной презентации были разобраны численные способы вычисления интегралов и написаны программы, которые реализуют эти методы в различных программных средах.

Приводится их сравнительный анализ. Выявляются преимущества и недостатки. Проблему вычисления интегралов с большой точностью можно решить с помощью рассмотренных программ, т. е. задачи, поставленные были выполнены.