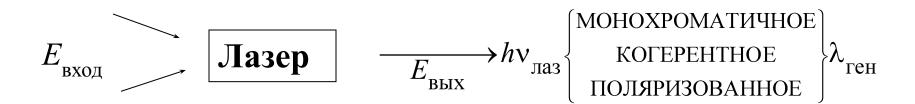

Классификация лазеров

- а. типу активной среды (АС) твердое тело, жидкость, газ, плазма;
- б. режиму работы импульсный, непрерывный, импульсный периодический;
- в. способу энергетической накачки оптическая, тепловая, газодинамическая, химическая, ядерная и др.



Оптическая Электрический разряд Газодинамическая Тепловая Химическая

1. Принцип действия лазеров

1. Принцип действия лазеров

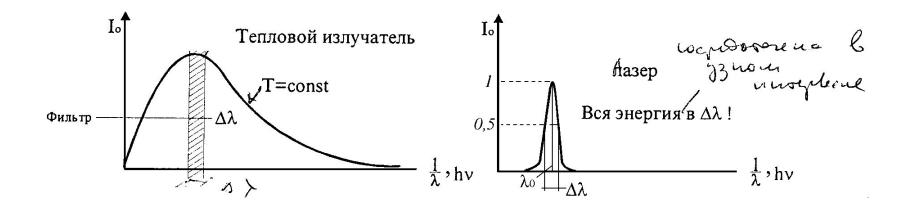


Рис. 1. Планковская кривая. Площадь под кривой — вся излучаемая энергия

$$\int_{0}^{\infty} I_{0}(\lambda) d\lambda = E_{\text{изл}}$$
 (1)

$$\mu = \frac{\Delta \lambda}{\lambda_0} \sim 10^{-4} - 10^{-8} \tag{2}$$

где

 λ_0 – центральная длина волны излучения,

 $\Delta \lambda$ - полуширина участка излучения (на половине амплитуды).

$$E_{\text{\'o\"a}}^{\Delta\lambda} = \frac{E_{\text{\'e\'c\"e}}}{S_{\Delta}\lambda} \sim 10^2 - 10^{18} \qquad [Дж/м^2 \cdot нм] \quad (3)$$

 S_n – площадь сечения лазерного пучка, [м²] $E_{\mathrm{yd}}^{\Delta\lambda}$ – спектральная плотность энергии, [Дж/м²·нм], [Дж/м²·мкм]

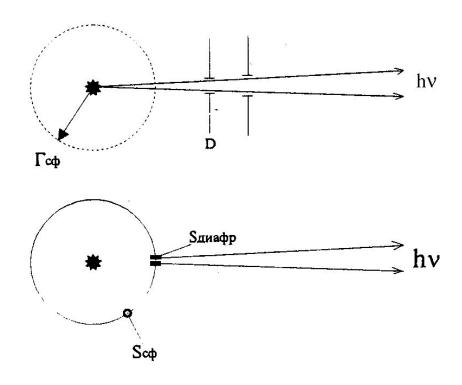


Рис. 2. Параметры излучения – пространственное распределение, направленность

Самолет-летающая лаборатория Ил-76МД СССР-86879 (1989 г.) с авиационным вариантом боевого мегаватного лазера A-60

Лазерная система ATL на самолете C130-H Hercules – художественное представление (изображение DARPA)

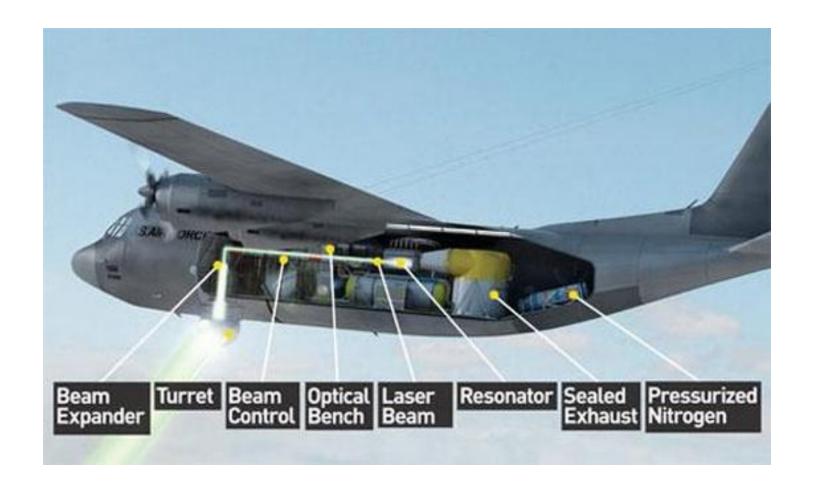
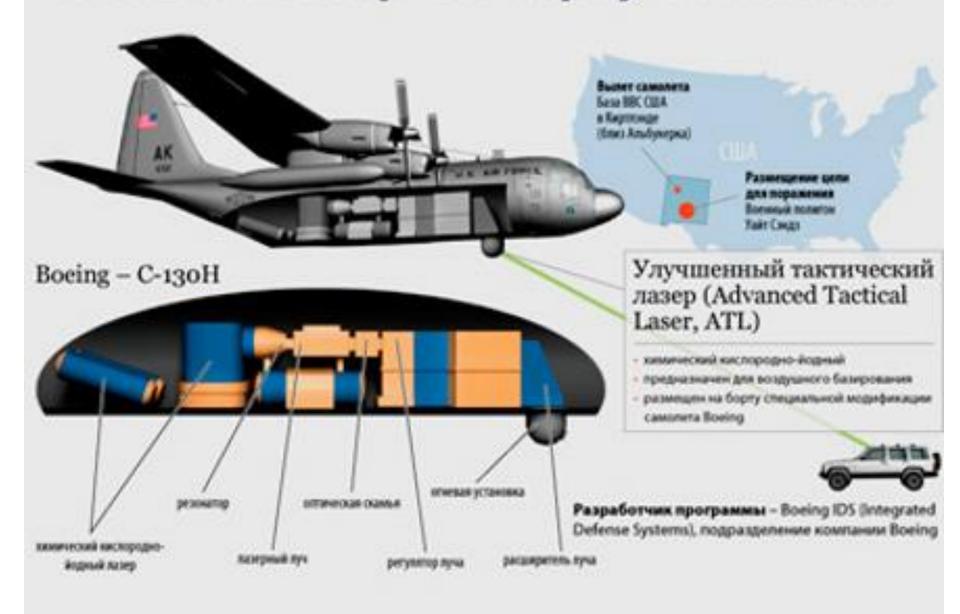
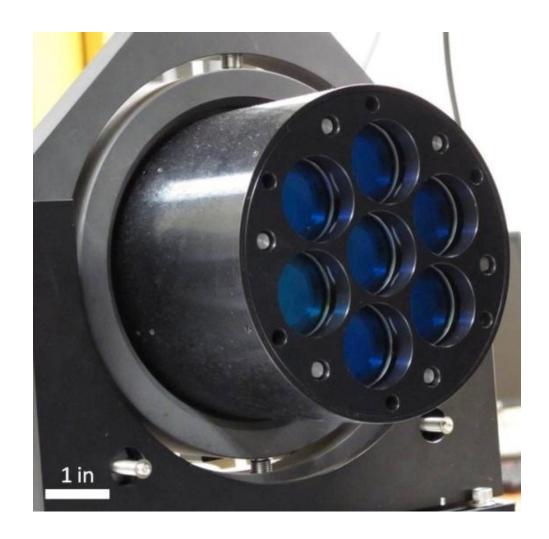
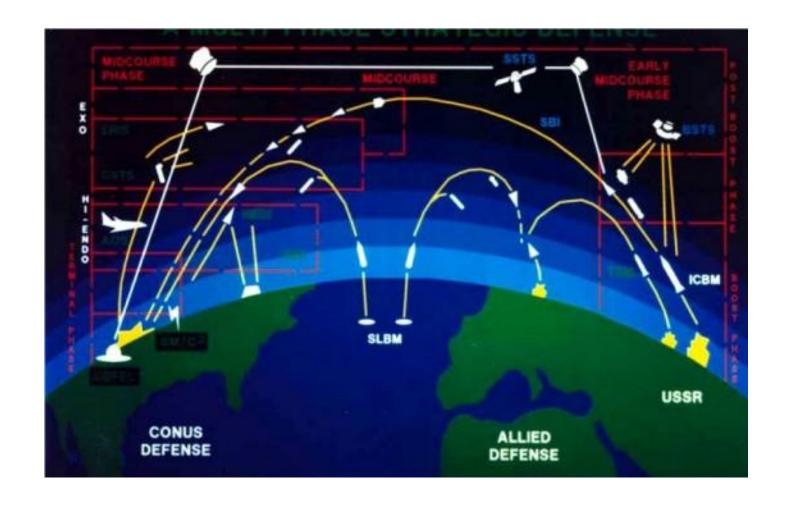



Схема лазерной установки ATL (изображение DARPA)


Боевой лазер на борту самолета


Боевой лазер США сбил ракету

Лазер высокой мощности, установленный на модифицированном самолете Boeing-747-400F, уничтожил ракету «на разгонном участке траектории»

Пушка Excalibur из массива волоконных лазеров (фото DARPA)

Концепция уничтожения МБР рентгеновским лазером в программе SDI

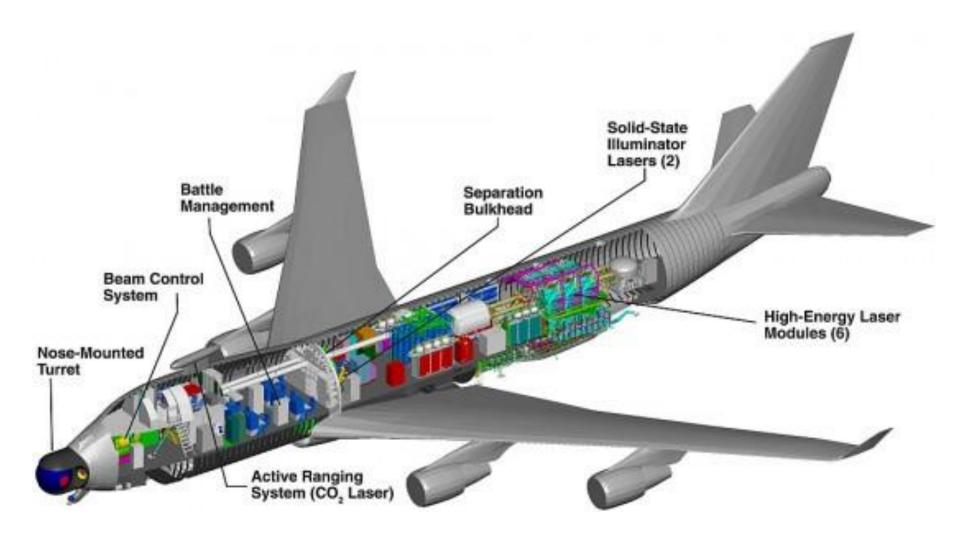


Схема самолёта Boeing 747-400F с боевым лазером YAL (изображение: Boeing)

Лазерная турель YAL-1 (фото: Boeing)

Советский спутник Скиф с лазером

2. Законы Кирхгофа, Стефана — Больцмана, Ламберта, Бугера

Закон Кирхгофа описывает одно из наиболее общих свойств теплового равновесного излучения. Он устанавливает связь между способностью тела испускать и способностью поглощать энергию излучения.

 $\frac{E_{1,\lambda}^{\text{\tiny H3JI}}}{a_{1,\lambda}} = \frac{E_{2,\lambda}^{\text{\tiny H3JI}}}{a_{2,\lambda}} = \dots = \frac{E_{n,\lambda}^{\text{\tiny H3JI}}}{a_{n,\lambda}} = E_{\text{AYT},\lambda}(\lambda, T)$ (1)

Сформулированный закон, известный как *закон Кирхгофа*, относится к излучению в узком спектральном интервале.

$$\frac{E_1^{u3n}}{a_1} = \frac{E_2^{u3n}}{a_2} = \dots = \frac{E_n^{u3n}}{a_n} = E_{A\text{YT}}(T). \tag{2}$$

Таким образом, *закон Кирхгофа* формулируется в следующем виде.

В условиях термодинамического равновесия отношение плотности спектрального (интегрального) потока испускаемого излучения к спектральной (интегральной) полусферической поглощательной способности тела является одинаковым для всех тел и равным спектральной (интегральной) плотности потока излучения абсолютно черного тела при той же температуре.

Из закона Кирхгофа вытекает ряд следствий, имеющих большое практическое значение.

Первое следствие определяет соотношение между излучательной способностью (степенью черноты) тела и его поглощательной способностью.

$$arepsilon_{n,\lambda}=E_{n,\lambda}\,/\,E_{0,\lambda}$$
 ,

$$\frac{E_{1,\lambda}}{a_{1,\lambda}} = \frac{E_{2,\lambda}}{a_{2,\lambda}} = E_{\lambda,0} = \frac{\varepsilon_{n,\lambda} E_{\lambda,0}}{a_{n,\lambda}}; \quad \frac{\varepsilon_{1,\lambda}}{a_{1,\lambda}} = \frac{\varepsilon_{2,\lambda}}{a_{2,\lambda}} = \dots \frac{\varepsilon_{n,\lambda}}{a_{n,\lambda}} = 1.$$
 (3)

$$E_{\lambda} = a_{\lambda} E_0(\lambda, T). \tag{4}$$

Второе следствие. Из всех тел при одной и той же температуре абсолютно черное тело обладает *максимальным спектральным* излучением для всех длин волн, поскольку оно имеет поглощательную способность $a0,\lambda=1$, а у остальных веществ $a\lambda \le 1$.

Тремье следствие. При условии, что между излучением и веществом имеется термодинамическое равновесие, распределение по спектру объемной плотности энергии излучения $u_{0,\lambda}$ [Дж/м³] определяется только температурой замкнутой системы полости и не зависит от величин, характеризующих вещество стен полости.

Первое следствие определяет соотношение между излучательной способностью (степенью черноты) тела и его поглощательной способностью.

$$\varepsilon_{n,\lambda} = E_{n,\lambda} / E_{0,\lambda}$$

$$\frac{E_{1,\lambda}}{a_{1,\lambda}} = \frac{E_{2,\lambda}}{a_{2,\lambda}} = E_{\lambda,0} = \frac{\varepsilon_{n,\lambda} E_{\lambda,0}}{a_{n,\lambda}}; \quad \frac{\varepsilon_{1,\lambda}}{a_{1,\lambda}} = \frac{\varepsilon_{2,\lambda}}{a_{2,\lambda}} = \dots \frac{\varepsilon_{n,\lambda}}{a_{n,\lambda}} = 1.$$
 (3)

$$E_{\lambda} = a_{\lambda} E_0(\lambda, T). \tag{4}$$

Второе следствие. Из всех тел при одной и той же температуре абсолютно черное тело обладает *максимальным спектральным* излучением для всех длин волн, поскольку оно имеет поглощательную способность $a_{0,\lambda} = 1$, а у остальных веществ $a_{\lambda} \le 1$.

Тремье следствие. При условии, что между излучением и веществом имеется термодинамическое равновесие, распределение по спектру объемной плотности энергии излучения $u_{0,\lambda}$ [Дж/м³] определяется только температурой замкнутой системы полости и не зависит от величин, характеризующих вещество стен полости.

Закон Стефана-Больцмана устанавливает для равновесных условий связь интегрального полусферического потока излучения элемента поверхности АЧТ с его абсолютной температурой.

Плотность потока равновесного излучения элемента поверхности АЧТ пропорциональна четвертой степени абсолютной температуры.

$$E_0 = \sigma_0 T^4, \tag{5}$$

где

 $\sigma_0 = 5,67032 \cdot 10^{-8} \text{ BT/(м}^2 \cdot \text{K}^4) - nocmoянная Стефана-Больцмана.}$

Закон Ламберта.

для любой точки объема полости в состоянии равновесия удельная сила объемного излучения (угловая плотность потока объемного излучения) $j_{\text{AЧТ}} \ [\text{Bt/(M}^3 \cdot \text{cp})]$ является постоянной величиной и не зависит от направления

$$j_{\mathrm{AYT}} = d\eta_{\mathrm{AYT}} \, / \, d\omega = const.$$
 где $\eta_{\mathrm{AYT}} - o \delta$ ъемная плотность потока излучения ω — телесный угол.

$$B_{\omega} = dQ / dF_N d\omega = \text{const}$$
 (7)

где Q — поток теплового излучения [Bт].

Энергетическая яркость — поток излучения в заданном направлении в пределах телесного угла $d\omega$, отнесенный к величине этого телесного угла и элементарной площадке dF_N , перпендикулярной данному направлению.

Закон Ламберта определяет угловое распределение равновесного излучения. Вследствие равновероятности испускания излучения по всем направлениям в АЧТ и принципа детального равновесия в каждой точке объема и поверхности распределение потока излучения во всех направлениях одинаково (изотропно).

$$j_{\text{AHT}} = d\eta_{\text{AHT}} / d\omega = const. \tag{6}$$

(8)

где

 $\eta_{\text{AЧT}}-$ объемная плотность потока излучения ω — телесный угол. $B_{\omega}=dQ/dF_{N}d\omega=\text{const}$

где Q — поток теплового излучения [Bт].

$$I_{\theta} = I_N \cos \theta = B \cos \theta.$$

 $\mathit{Интенсивность}$ излучения I_{θ} единицы поверхности в какомнибудь $\mathit{направлении}$ θ пропорциональна косинусу угла между этим направлением и нормалью к поверхности N .

Закон Бугера-Ламберта-Бэра. Интенсивность спектрального излучения J_0 вдоль некоторого направления Ω экспоненциально уменьшается при распространении излучения в поглощающей среде, а показатель экспоненты равен интегралу от текущего объемного коэффициента ослабления по длине пути, пройденного излучением.

Математическое выражение *закона Бугера-Ламберта-Бэра* имеет вид

$$J_{\mathcal{V}}(s) = J_{\mathcal{V}}(s=0) \exp \left[-\int_{s=0}^{s} k_{\mathcal{V}}(s') ds' \right], \tag{9}$$

где

s – координата вдоль луча с направляющим вектором Ω ;

 $k_{\rm v}$ — спектральный коэффициент ослабления излучения [м $^{-1}$] ($k_{\rm v}$ = $\alpha_{\rm v}$ + $\beta_{\rm v}$, где $\alpha_{\rm v}$ — спектральный коэффициент поглощения; $\beta_{\rm v}$ — спектральный коэффициент рассеяния)

Спектральной оптической толщиной отрезка луча *s* называют интеграл

$$\tau_{\mathcal{V}} = \int_{s=0}^{s} k_{\mathcal{V}}(s')ds' \tag{10}$$

В теории переноса излучения используются понятия спектральных оптических толщин по отношению к отдельным процессам:

$$\tau_{v,s} = \int\limits_{s=0}^{s} \beta_v(s') ds' - \text{спектральная оптическая толщина по } noглощению;$$

$$au_{v,a} = \int\limits_{s=0}^{s} lpha_v(s') ds'$$
спектральная оптическая толщина по рассеянию

3. Спектральное распределение излучения абсолютно черного тела. Закон Планка

Закон Планка.

Число атомов N_m с энергией возбуждения W_m в состоянии m в состоянии равновесия определяется формулой Больцмана

$$N_{m} = N \frac{g_{m}}{g_{0}} \exp\left(-\frac{W_{m}}{kT}\right) \tag{11}$$

где N — число атомов в единице объема;

 g_m — статистический вес энергетического уровня W_m (кратность вырождения уровня энергии — число различных квантовомеханических состояний, которым соответствует данное значение энергии) при температуре T, K;

 g_0 — статистический вес основного состояния (состояния с энергией возбуждения W_0 =0).

При переходе из состояния n в состояние m ($W_n > W_m$) атом испускает квант энергии $hv = W_n - W_m$.

$$\frac{N_m}{N_n} = \frac{g_m}{g_n} \exp\left(\frac{W_n - W_m}{kT}\right) = \frac{g_m}{g_n} \exp\left(\frac{h\nu}{kT}\right).$$

Среднее число переходов в единицу времени определяется вероятностными коэффициентами Эйнштейна: для спонтанных переходов A_{nm} , для вынужденных переходов B_{nm} , для обратных переходов B_{mn} .

По принципу детального равновесия в термодинамическом равновесии для каждого перехода должно соблюдаться равенство

где
$$u_{0,\nu}-c$$
 пектральная объемная плотность энергии излучения АЧТ. Отсюда
$$u_{0,\nu}=\frac{A_{nm}N_n u_{0,\nu}}{B_{mn}N_m}=\frac{8\pi h\nu^3}{c_0^3}\frac{1}{\exp(h\nu/kT)-1}, \tag{12}$$
 где

 $A_{nm}/B_{nm}=8\pi\hbar v^3/c_0$

$$rac{c_0$$
 – скорость света в вакууме; N_m - число атомов в состоянии N_m - число атомов в состоянии N_m - число атомов в состоянии N_m

 $N_{\scriptscriptstyle m}$ - число атомов в состоянии m N_n - число атомов в состоянии n

Полученная формула (12) — *закон Планка* в *шкале частот* для спектральной плотности энергии в единице объема АЧТ $[Дж/(M^3 \cdot \Gamma \iota)]$.

Для *потока излучения* единицы поверхности $E_{0,v}$ [Вт/(м² · Гц)] (с учетом E=0,25 c_0u) формула Планка записывается в виде

$$E_{0,\nu} = \frac{2\pi h\nu^3}{c_0^2} \frac{1}{\exp(h\nu/kT) - 1}.$$
 (13)

В спектральной *шкале длин волн* λ для *спектральной яркости* $B_{0,\lambda}$, $Bt/(m^3 \cdot cp)$, используемой в пирометрии, формула Планка записывается с постоянными c_1 и c_2 :

$$B_{0,\lambda} = \frac{c_1 \lambda^{-5}}{\pi} \left[\exp(c_2 / \lambda T) - 1 \right]^{-1}$$
, (14)

где первая и вторая постоянные Планка равны соответственно: $c_1 = 2\pi h c_0^2 = 3,71832 \cdot 10^{-16} \; \mathrm{Bt \cdot m^2};$ $c_2 = h c_0 / k = 1,438786 \cdot 10^{-2} \; \mathrm{m \cdot K}.$

В спектральной шкале волновых чисел \hat{v} [см⁻¹], часто используемой при расчетах переноса излучения в газах, формула Планка обычно записывается для спектральной интенсивности излучения $I_{0,\hat{v}}$ [Вт/(м²·см⁻¹·ср)]

$$I_{0,\widetilde{v}} = 11,9086(\widetilde{v}/1000)^3 \left[\exp\left(\frac{1,4388\widetilde{v}}{T}\right) - 1 \right]^{-1}.$$
 (15)

где волновое число $\dot{\mathbf{B}}$ [см⁻¹], а температура T в [K].

В логарифмической шкале распределение Планка представлено на рис.1.

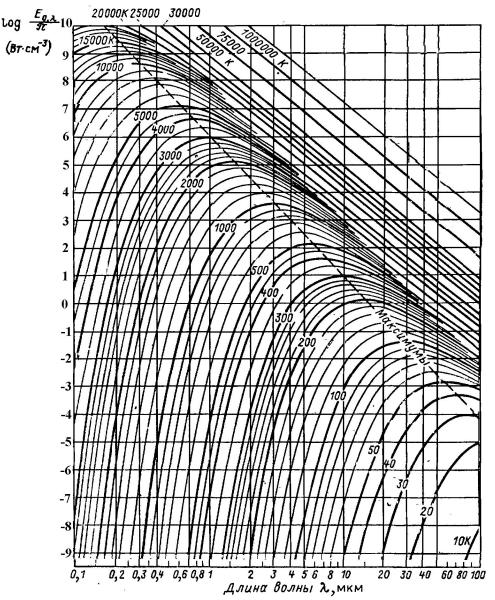


Рис. 1. Спектральное распределение излучения абсолютно черного тела (АЧТ) в логарифмических координатах.

Следствия из закона Планка.

Из формулы Планка непосредственно вытекают:

- а) *закон смешения Вина*, определяющий положение максимума излучения;
 - б) законы излучения Рэлея-Джинса и
- в) Bина как предельные случаи при больших и малых значениях аргумента λT ,
 - г) а также закон Стефана-Больцмана.

Закон смещения Вина.

$$\lambda_{\text{max}}T = 2897,82$$
 MKM·K, (16)

Закон смещения Вина определяет положение максимума спектральной энергии излучения, испускаемой абсолютно черным телом.

$$E_{0,\lambda}^{\text{max}} = 21, 2\frac{c_1}{c_2^5} T^5 = 1,286 \cdot 10^{-5} T^5$$
[BT/M³]. (17)

Закон Рэлея-Джинса.

Из формулы Планка [(13), (14) и (15)] можно получить некоторые упрощенные предельные выражения. Если $\lambda T >> c_2$, то разложив в ряд выражение ($\exp(c_2/\lambda T) - 1$) в формуле (14):

$$\exp(c_2/\lambda T) - 1 = 1 + \frac{c_2}{\lambda T} + \frac{1}{2!} \left(\frac{c_2}{\lambda T}\right)^2 + \dots + \frac{1}{n!} \left(\frac{c_2}{\lambda T}\right)^n - 1$$
 (18)

(это так называемая *длинноволновая аппроксимация функции* Планка)

$$E_{0,\lambda} = \frac{c_1}{c_2} \frac{T^5}{(\lambda T)^4} = \frac{c_1}{c_2} \frac{T}{\lambda^4}.$$

Закон Вина.

Если $\lambda T << c_2$, т.е. $\exp(c_2/(\lambda T)) >> 1$, то выражение (14) переходит в часто используемое в пирометрии приближенное выражение для спектральной яркости излучения

$$\frac{B_{\lambda}(\lambda T)}{T^5} = \frac{2c_1}{(\lambda T)^5 \exp(c_2/\lambda T)}.$$
 (19)

которое иначе называют *законом излучения Вина* (это так называемая *коротковолновая аппроксимация функции Планка*).

Этот закон часто используют для определения излучательной способности по яркостной температуре $(T_{\mathfrak{g}})$, которая определена как температура АЧТ, имеющего одинаковую спектральную энергетическую яркость с излучением реального тела при температуре (T):

$$B_{\lambda}(T_{\mathrm{ff}}) = \varepsilon_{\lambda} B_{\lambda}(T); \qquad \ln \varepsilon_{\lambda} = \frac{c_2}{\lambda} \left(\frac{1}{T} - \frac{1}{T_{\mathrm{\ddot{y}}}} \right),$$
 (20)

где

 ε_{λ} – степень черноты.

Интегрирование распределения Планка.

Между законами Планка и Стефана-Больцмана существует естественная взаимосвязь, позволяющая найти численное значение постоянной Стефана-Больцмана (σ_0). Найдем интегральную плотность потока равновесного излучения $E_0 = \int\limits_0^\infty E_{0,\nu} d\nu$ из закона Планка (13):

$$E_0 = \int_0^\infty \frac{2\pi h c_0^{-2} v^3 dv}{\exp(hv/kT) - 1} = \frac{2\pi k^4}{h^3 c_0^2} \int_0^\infty \frac{\xi d\xi}{\exp(\xi) - 1} = \frac{2\pi^5 k^4}{15h^3 c_0^2} T^4,$$
 (21)

где $\xi = c_2/\lambda T$;

 c_0 – скорость света в вакууме [м/с];

k – постоянная Больцмана [Дж/K];

h – постоянная Планка [Дж⋅с].

Приравнивая выражения (21) и (5) находим значение постоянной в формуле (5):

$$\sigma_0 = \frac{2\pi k^4}{h^3 c_0^2} \frac{\pi^4}{15} \tag{21'}$$

 $\sigma_0 = 5,67032 \cdot 10^{-8} \, [\mathrm{Bt/(m^2 \cdot K^4)}] - nocmoянная Стефана–Больцмана.$ Плотность потока излучения в заданном спектральном интервале численно равна площади под кривой распределения Планка в том же интервале.

 $\it Интегральная плотность потока E_0$ — полной площади под кривой при данной температуре.

Если в качестве аргумента взять λT , а в качестве функции E_0/T^5 , то графики для разных температур сольются в одну общую кривую, представленную на рис.2:

$$\frac{E_0}{T^5} = \frac{c_1(\lambda T)^{-5}}{\exp(c_2/\lambda T) - 1}.$$
 (22)

Удобство этой формы в том, что доля общей площади под кривой, т. е. доля энергии АЧТ в интервале будет едина для всех температур.

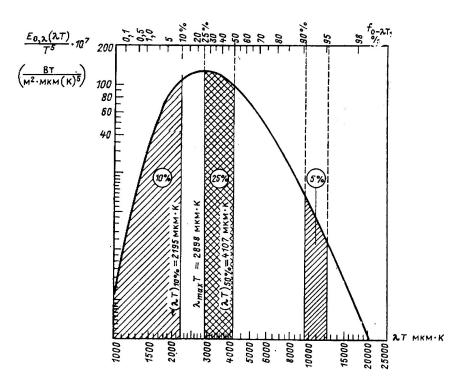


Рис.2. Распределение энергии излучения АЧТ в процентных долях от общей энергии излучения в зависимости от λT

Излучение абсолютно черного тела в спектральных интервалах

Излучение в конечном спектральном интервале выражается долей от *интегрального потока излучения* $E_0 = \sigma_0 T^4$, испускаемого в участке спектра λ_1 – λ_2 или 0– λ :

исетие спектра
$$\lambda_1 \to \lambda_2$$
 изит о λ_3 (23)
$$f_{\Delta\lambda} = \frac{\Delta E_{\Delta\lambda}}{E_0} = \frac{\int\limits_{\lambda_1}^{\lambda_2} E_{\lambda}(\lambda T) d\lambda}{\int\limits_{0}^{\infty} E_{\lambda}(\lambda T) d\lambda} = \frac{1}{\sigma_0 T^4} \left[\int\limits_{0}^{\lambda_2} E_{\lambda}(\lambda T) d\lambda - \int\limits_{0}^{\lambda_1} E_{\lambda}(\lambda T) d\lambda \right] = f_{0-\lambda_2} - f_{0-\lambda_1}.$$

 $\Delta E_{\Lambda\lambda}$ - плотность потока излучения в спектральном интервале $\Delta\lambda$ $=\lambda 1-\lambda_2;$

 $_{E\lambda}$ - спектральная плотность потока излучения. Границы спектральных интервалов рассчитаны по формуле

$$f_{\Delta\tilde{\mathbf{v}}} = \frac{\Delta W_{\tilde{\mathbf{v}}}}{W} = \frac{1}{\sigma_{o} T^{4}} \int_{\tilde{\mathbf{v}}}^{\tilde{\mathbf{v}}_{2}} W_{\tilde{\mathbf{v}}}(\tilde{\mathbf{v}}, T) d\tilde{\mathbf{v}} = 0,01.$$
(24)

где

- энергия излучения в интервале;

W — интегральная энергия излучения АЧТ при температуре T.

В табл. 1 для примера приведены значения границ спектральных диапазонов в см $^{-1}$, которые соответствуют 1%-ным долям энергии излучения АЧТ при данной температуре.

Таблица 1. Распределение излучения абсолютно черного тела по долям энергии

	$T, K; t, {}^{0}C$							<u> </u>	
	973	1073	1173	1273	1373	1473	1573	1673	1773
$f_{\Delta\widetilde{ u}},\%$	700	800	900	1000	1100	1200	1300	1400	1500
	Значения границ спектральных диапазонов, см ⁻¹ , соответствующие 1%-ным								
Şi	долям энергии излучения АЧТ							<u> </u>	
1	6724	7415	8106	8798	9489	10 180	10871	11 562	12253
2	6070	6693	7317	7941	8565	9188	9812	10436	11 060
3	5676	6259	6842	7425	8009	8592	9175	9759	10342
4	5391	5945	6499	7053	7607	8161	8715	9269	9823
5	5164	5694	6225	6756	7286	7817	8348	8878	9409
***			***			• • •			•••
96	715	788	862	935	1009	1082	1156	1229	1303
97	640	706	772	837	903	969	1035	1100	1166
98	549	605	661	718	774	831	887	943	1000
99	424	468	512	555	599	643	686	730	773
100	0	0	0	0	0	0	0	0	0

В таблице 1 даны доли энергии для температур: 700 - 1500 ⁰C через 100 ⁰C, однако ею можно пользоваться и для определения спектральных границ того же энергетического интервала при любой температуре $T_{\rm x}$.

Пересчет производится по формуле

$$\mathbf{\hat{v}}_{x} = \mathbf{\hat{v}}_{\dot{o}\dot{a}\dot{a}} T_{x} / T_{\dot{o}\dot{a}\dot{a}}, \tag{25}$$

где

 $\widetilde{v_{_{x}}}$ - искомая граница спектрального диапазона данного % энергии, для которого взяты табличные значения $T_{_{{\rm Ta}6}}$ и $\widetilde{v_{_{{\rm Ta}6}}}$.

Таблица 2. 2%-ная универсальная таблица долей энергии

$f_{\widetilde{v}}$, %	λT , мкм \cdot К	$f_{\tilde{v}}$,%	λT , мкм \cdot К	$f_{\widetilde{v}}$, %	λT , мкм \cdot К	$f_{\tilde{v}}$, %	λT , мкм \cdot К	$f_{\tilde{v}}$, %	λT , мкм \cdot К
2	1603	22	2765	42	3381	62	4893	82	7216
4	1805	24	2854	44	3783	64	5051	84	7621
6	1955	26	2942	46	3887	66	5218	86	8096
8	2082	28	3030	48	3995	68	5397	88	8669
10	2195	30	3119	50	4107	70	5590	90	9377
12	2230	32	3209	52	4223	72	5799	92	10299
14	2399	34	3300	54	4345	74	6027	94	11 585
16	2494	36	3392	56	4473	76	6277	96	13611
18	2586	38	3486	58	4605	78	6554	98	17737
20	2675	40	3583	60	4745	80	6864	100	

Табл.2 построена в виде универсальной зависимости доли энергии (через 2%) от диапазона сложного аргумента λT (мкм · К), поэтому по ней могут быть прослежены как положение границ диапазонов при фиксированной температуре, так и перемещение границы отдельного диапазона при изменении температуры.

Значения фундаментальных констант, использованные для расчета таблиц 1 и 2 приведены в таблице 3.

Таблица 3

Фундаментальные физические постоянные

	1000000
Постоянная Планка h	6,6256·10 ⁻³⁴ Дж·с
Скорость света в вакууме c_0	2,99792458·10 ⁸ м/с
Постоянная Больцмана <i>k</i>	1,380662·10 ⁻²³ Дж/К
Постоянная Стефана — Больцмана $\sigma_0 = \frac{2k^4\pi^5}{15h^3c_0^2}$	5,67032·10 ⁻⁸ Bt/(m ² ·K)
Первая постоянная излучения $c_1 = 2\pi h c_0^2$	3,741832·10 ⁻¹⁶ Вт·м ²
Вторая постоянная излучения $c_2 = \frac{hc_0}{l}$	1,438786·10 ⁻² м·К