72 MapQuest: Driving Directions: North

Flo Edt Yow Favortes Iook Hep

e . -
Back siop Refresh Home Seach _ Favortes
Address [@] http:fju 5

+ Loz Angsles

* Los Angeles Movi 5 = om)
T e E Mgﬂbﬂs‘;;“:tmn

Search Santa Monica
far:

[Auto repair ~

Search

CLICKING ON MAPWILL: € Zoom In @ Re-center

Ell |
3]

® interet

Introduction to Artificial Intelligence

A* Search

Ruth Bergman

Fall 2004

Best-First Search

Review

— Takes advantage of domain information to guide search

— Greedy advance to the goal

« Disadvantages

— Considers cost to the goal from the current state
— Some path can continue to look good according to the

heuristic function

At this point the path is more —
costly than the alternate path

3

— | 2

1

.

X

The A* Algorithm

« Consider the overall cost of the solution.
f(n) = g(n) + h(n) where g(n) is the path cost to node n

think of f(n) as an estimate of the cost of the best solution going
through the node n

The A* Algorithm

A*-Search(initial-test) :; functions cost, h, succ, and GoalTest are defined
open <- MakePriorityQueue(initial-state, NIL, 0, h(initial-state), h(initial-state))
;; (state, parent, g, h, f)
while (not(empty(open)))
node (] pop(open), state [| node-state(node)
closed [push (closed, node)
if GoalTest(state) succeeds return node
for each child in succ(state)
new-cost [node-g(node) + cost(state,child)
if child in open
if new-cost < g value of child
update(open, child, node, new-cost, h(child), new-cost+h(child))
elseif child in closed
if new-cost < g value of child
insert(open, child, node, new-cost, h(child), new-cost+h(child))
delete(closed,child)
else
open LI push(child, node, new-cost, h(child), new-cost+h(child))
return failure

A* Search: Example

» Travel: h(n) = distance(n, goal)

71 Oradea Neamt
(255 J1asi (226)
92
Vaslui
Fagaras (199)
118 14
98
imisoara 85 Urziceni| |Hirsova
(3%t Lugoj (80) (151)
70 (244 Bucharest
Me&adia {38 (0) 36
7
Dobreta _ Giurgiu Eforie
(242) =20 Craiova 77) (161)

(160)

or:
Auta repair -l §
Search

Timisoara

f=140+253 f=118+329 1=75+374 Arad
=393 =447 =449

Timisoara Zerind

f=118+329 f=75+374
=447 =449

Sibiu

Arad Oradea

t=280+366 {=239+1738 f=146+380 {=220+193
=646 =417 =526 =413

Sibiu

Arad

Zerind

f=75+374
=449

Timisoara

f=118+329
=447

Arad
=280+366 f=239+178 f=146+380
=646 =417 =526

Craiova Pitesti Sibiu

f=366+160 f=317+98 f=300+253
=526 =415 =553

Figure 4.4 Stages in an A* search for Bucharest. Nodes are labelled with f = g + h. The h
values are the straight-line distances to Bucharest taken from Figure 4.1.

Admissible Heuristics

« we also require h be admissible:
— a heuristic h is admissible if h(n) < h*(n) for all nodes n,
— where h* is the actual cost of the optimal path from n to the
goal
« Examples:

— travel distance straight line distance must be shorter than
actual travel path

— tiles out of place each move can reorder at most one tile
distance of each out of place tile from the correct place each
move moves a tile at most one place toward correct place

Optimality of A*

« Let us assume that f is non-decreasing along each path

if not, simply use parent’s value

if that’s the case, we can think of A* as expanding f contours toward
the goal; better heuristics make this contour more “eccentric”

« Let G be an optimal goal state with path cost f*
* Let G, be a suboptimal goal state with path cost g(G,) > f*.

suppose A* picks G, before G (A* is not optimal)

suppose n is a leaf node on the path to G when G, is chosen

if h is admissible, then f* >= f(n)

since n was not chosen, it must be the case that f(n) >= f(G,)
therefore f* >= f(G,), but since G, is a goal, h(G,)=0, so f* >= g(G,)
But this is a contradiction --- G, is a better goal node than G

Thus, our supposition is false and A* is optimal.

Completeness of A*

« Suppose there is a goal state G with path cost f*

— Intuitively: since A* expands nodes in order of increasing f, it must
eventually expand node G

« |f A* stops and fails
— Prove by contradiction that this is impossible.
— There exists a path from the initial state to the node state
— Let n be the last node expanded along the solution path
— n has at least one child, that child should be in the open nodes

— A* does not stop until there are open list is empty (unless it finds a
goal state). Contradiction.

* A% is on an infinite path
— Recall that cost(s1,s2) > 6
— Let n be the last node expanded along the solution path

— After f(n)/6 the cumulative cost of the path becomes large enough
that A* will expand n. Contradiction.

UCS, BFS, Best-First,

and A*
ef=g+h =>A*Search
ch=0 => Uniform cost search

* g =1, h=0 =>Breadth-First search
eg=0 => Best-First search

+ Loz Angeles News
+ Loz Angsles Movies

+ Loz Anasles
Entertainment

[Auto repair -]
Search

CLICKING ON MAPWILL: © Zoom In @ Re-center

State contains 8 queens on the board

Successor function returns all states generated by moving a single
queen)to another square in the same column (8*7 = 56 next
states

h(s) = number of queens that attack each other in state s.

Favorkes

=] @Go ||unks »|

Loz Angsles News

+ Loz Angsles Movies

+ Loz Anasles
Entertainment

| Auto repair E
Search

CLICKING ON MAPWILL: Zoom In @ Re-center

& T @i 7

8 Puzzle

« Reachable state : 91/2 = 181,440

 Use of heuristics

— h1 : # of tiles that are in the wrong position
— h2 : sum of Manhattan distance

8 | 5| 6 hiss 8 4

7 4 h2 = 1+2+2=5 7| 6 |5

Effect of Heuristic
Accuracy on
Performance

» Well-designed heuristic have its branch close to 1
* h, dominates h, iff

h,(n)2h.(n), ¥V n

It is always better to use a heuristic function with
higher values, as long as it does not overestimate

Inventing heuristic functions

— Cost of an exact solution to a relaxed problem is a good
heuristic for the original problem

— collection of admissible heuristics
h*(n) = max(h,(n), h,(n), ..., h (n))

Search Cost Effective Branching Factor

d IDS A*(h)) A*(hy) IDS A*(h)) A*(hy)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39) 2.80 1.38 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - J9135 1641 - 1.48 1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the
ITERATIVE-DEEPENING-SEARCH and A* algorithms with h;, h,. Data are averaged over 100
instances of the 8-puzzle, for various solution lengths.

A* summary

Completeness

— provided finite branching factor and finite cost per operator
Optimality

— provided we use an admissible heuristic

Time complexity

— worst case is still O(b%) in some special cases we can do
better for a given heuristic

e Space complexity
— worst case is still O(b9)

Relax Optimality

« Goals:

f(s)

Minimizing search cost

Satisficing solution, i.e. bounded error in the
solution

= (1-w) g(s) + w h(s)

g can be thought of as the breadth first component
w =1 => Best-First search

w = .5 => A* search

w =0 => Uniform search

lterative Deepening A*

Goals
— A storage efficient algorithm that we can use in practice
— Still complete and optimal

Modification of A*

— use f-cost limit as depth bound
— increase threshold as minimum of f(.) of previous cycle

Each iteration expands all nodes inside the contour
for current f-cost

same order of node expansion

IDA* Algorithm

IDA* (state,h) returns solution
f-limit <- h(state)
loop do
solution, f-limit (| DFS-Contour(state, f-limit)
if solution is non-null return solution
if f-limit = « return failure

end

DFS-Contour (node,f-limit) returns solution
if f (node) > f-limit return null, f(node)

if GoalTest(node) return node, f-limit

next-f [] «

for each node s in succ(node) do
solution, new-f [1 DFS-Contour(s, f-limit)
if solution is non-null return solution, f-limit
next-f [Min(next-f, new-f)

end

return null, next-f

IDA* Properties

Complete:
— if shortest path fits into memory

* Optimal:

— if shortest optimal path fits into memory
» Time Complexity: O(b?9)

« Space Complexity: O(bd)

Mapquest

« MapQuest uses a "double Dijkstra" algorithm
for its driving directions, working backward
from both the starting and ending points at
once. MapQuest uses a "double Dijkstra"
algorithm for its driving directions, working
backward from both the starting and ending
points at once.

 the algorithm uses heuristic tricks to minimize
the size of the graph that must be searched.

