

Introduction to Artificial Intelligence A* Search

Ruth Bergman Fall 2004

Best-First Search Review

- Advantages
- Takes advantage of domain information to guide search
- Greedy advance to the goal
- Disadvantages
- Considers cost to the goal from the current state
- Some path can continue to look good according to the heuristic function

At this point the path is more
 costly than the alternate path

The A* Algorithm

- Consider the overall cost of the solution.

$$
f(n)=g(n)+h(n) \quad \text { where } g(n) \text { is the path cost to node } n
$$

think of $f(n)$ as an estimate of the cost of the best solution going through the node n

The A* Algorithm

A*-Search(initial-test)
;; functions cost, h, succ, and GoalTest are defined open <- MakePriorityQueue(initial-state, NIL, $0, h$ (initial-state), h(initial-state)) ;; (state, parent, g, h, f)
while (not(empty(open)))
node \square pop(open), state \square node-state(node) closed push (closed, node) if GoalTest(state) succeeds return node for each child in succ(state) new-cost \square node-g(node) + cost(state,child) if child in open
if new-cost < \mathbf{g} value of child
update(open, child, node, new-cost, h(child), new-cost+h(child)) elseif child in closed
if new-cost < g value of child
insert(open, child, node, new-cost, h(child), new-cost+h(child)) delete(closed,child)
else
open \square push(child, node, new-cost, h(child), new-cost+h(child))
return failure

A* Search: Example

- Travel: $\mathrm{h}(\mathrm{n})=$ distance(n, goal)

A* Search : Example

Figure 4.4 Stages in an A* search for Bucharest. Nodes are labelled with $f=g+h$. The h values are the straight-line distances to Bucharest taken from Figure 4.1.

Admissible Heuristics

- we also require h be admissible:
- a heuristic h is admissible if $h(n)<h^{*}(n)$ for all nodes n,
- where h^{*} is the actual cost of the optimal path from n to the goal
- Examples:
- travel distance straight line distance must be shorter than actual travel path
- tiles out of place each move can reorder at most one tile distance of each out of place tile from the correct place each move moves a tile at most one place toward correct place

Optimality of A^{*}

- Let us assume that f is non-decreasing along each path
- if not, simply use parent's value
- if that's the case, we can think of A^{*} as expanding f contours toward the goal; better heuristics make this contour more "eccentric"
- Let G be an optimal goal state with path cost f^{*}
- Let G_{2} be a suboptimal goal state with path cost $g\left(G_{2}\right)>f^{*}$.
- suppose A^{*} picks G_{2} before G (A^{*} is not optimal)
- suppose n is a leaf node on the path to G when G_{2} is chosen
- if h is admissible, then $f^{*}>=f(n)$
- since n was not chosen, it must be the case that $f(n)>=f\left(G_{2}\right)$
- therefore $f^{*}>=f\left(G_{2}\right)$, but since G_{2} is a goal, $h\left(G_{2}\right)=0$, so $f^{*}>=g\left(G_{2}\right)$
- But this is a contradiction --- G_{2} is a better goal node than G
- Thus, our supposition is false and A^{*} is optimal.

Completeness of A^{*}

- Suppose there is a goal state G with path cost f^{*}
- Intuitively: since A* expands nodes in order of increasing f, it must eventually expand node G
- If A^{*} stops and fails
- Prove by contradiction that this is impossible.
- There exists a path from the initial state to the node state
- Let n be the last node expanded along the solution path
- n has at least one child, that child should be in the open nodes
- A* does not stop until there are open list is empty (unless it finds a goal state). Contradiction.
- A^{*} is on an infinite path
- Recall that cost(s1,s2) >
- Let n be the last node expanded along the solution path
- After $\mathrm{f}(\mathrm{n}) / \delta$ the cumulative cost of the path becomes large enough that A^{*} will expand n . Contradiction.

UCS, BFS, Best-First, and A^{*}

- $f=g+h \quad=>A^{*}$ Search
- $h=0 \quad=>$ Uniform cost search
- $g=1, h=0$ => Breadth-First search
- $g=0 \quad=>$ Best-First search

Road Map Problem

8-queens

State contains 8 queens on the board
Successor function returns all states generated by moving a single queen to another square in the same column ($8^{\star 7}=56$ next states)
$\mathrm{h}(\mathrm{s})=$ number of queens that attack each other in state s .

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	V/k	13	16	13	16
$N /$	14	17	15	N/k	14	16	16
17	y^{W}	16	18	15	Vk	15	NV/
18	14	W	15	15	14	VW	16
14	14	13	17	12	14	12	18

$$
H(s)=17
$$

$$
H(s)=1
$$

Heuristics : 8 Puzzle

8 Puzzle

-Reachable state : $9!/ 2=181,440$

- Use of heuristics
- h1: \# of tiles that are in the wrong position
- h2 : sum of Manhattan distance

1	2	3
8	5	6
7		4

$$
h 1=3
$$

$h 2=1+2+2=5$

1	2	3
8		4
7	6	5

Effect of Heuristic Accuracy on Performance

- Well-designed heuristic have its branch close to 1
- h_{2} dominates h_{1} iff
$h_{2}(n) \geq h_{1}(n), \quad \forall n$
- It is always better to use a heuristic function with higher values, as long as it does not overestimate
- Inventing heuristic functions
- Cost of an exact solution to a relaxed problem is a good heuristic for the original problem
- collection of admissible heuristics

$$
h^{*}(n)=\max \left(h_{1}(n), h_{2}(n), \ldots, h_{k}(n)\right)
$$

	Search Cost			Effective Branching Factor		
d	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$	IDS	$\mathrm{A}^{*}\left(h_{1}\right)$	$\mathrm{A}^{*}\left(h_{2}\right)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	211	-	1.45	1.25	
18	-	3056	-	1.46	1.26	
20	-	7276	-	1.47	1.27	
22	-	18094	1646	-	1.48	1.28
24	-	39135			1.48	1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^{*} algorithms with h_{1}, h_{2}. Data are averaged over 100 instances of the 8-puzzle, for various solution lengths.

A* summary

- Completeness
- provided finite branching factor and finite cost per operator
- Optimality
- provided we use an admissible heuristic
- Time complexity
- worst case is still $O\left(b^{d}\right)$ in some special cases we can do better for a given heuristic
- Space complexity
- worst case is still $O\left(b^{d}\right)$

Relax Optimality

- Goals:
- Minimizing search cost
- Satisficing solution, i.e. bounded error in the solution
$f(s)=(1-w) g(s)+w h(s)$
- g can be thought of as the breadth first component
- w = 1 => Best-First search
$-w=.5$ => A* search
- w = 0 => Uniform search

Iterative Deepening A*

- Goals
- A storage efficient algorithm that we can use in practice
- Still complete and optimal
- Modification of A^{*}
- use f-cost limit as depth bound
- increase threshold as minimum of $f($.) of previous cycle
- Each iteration expands all nodes inside the contour for current f-cost
- same order of node expansion

IDA* Algorithm

$$
\begin{aligned}
& \text { IDA* (state, } \mathrm{h} \text {) returns solution } \\
& \mathrm{f} \text {-limit <-h(state) } \\
& \text { loop do } \\
& \text { solution, } \mathrm{f} \text {-limit } \square \text { DFS-Contour(state, } \mathrm{f} \text {-limit) } \\
& \text { if solution is non-null return solution } \\
& \text { if f-limit }=\infty \text { return failure } \\
& \text { end }
\end{aligned}
$$

DFS-Contour (node,f-limit) returns solution
if f (node) >f-limit return null, $f($ node $)$
if GoalTest(node) return node, f-limit
next-f $\square \infty$
for each node s in succ(node) do
solution, new-f \square DFS-Contour(s, f-limit)
if solution is non-null return solution, f -limit
next-f \square Min(next-f, new-f)
end
return null, next-f

IDA* Properties

- Complete:
- if shortest path fits into memory
- Optimal:
- if shortest optimal path fits into memory
- Time Complexity: $\mathrm{O}\left(\mathrm{b}^{2 \mathrm{~d}}\right)$
- Space Complexity: O(bd)

Mapquest

- MapQuest uses a "double Dijkstra" algorithm for its driving directions, working backward from both the starting and ending points at once. MapQuest uses a "double Dijkstra" algorithm for its driving directions, working backward from both the starting and ending points at once.
- the algorithm uses heuristic tricks to minimize the size of the graph that must be searched.

