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Best-First Search 
Review

• Advantages
– Takes advantage of domain information to guide search
– Greedy advance to the goal 

• Disadvantages
– Considers cost to the goal from the current state
– Some path can continue to look good according to the 

heuristic function
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At this point the path is more
costly than the alternate path



The A* Algorithm
• Consider the overall cost of the solution.
 

f(n) = g(n) + h(n)     where g(n) is the path cost to node n
 
think of f(n) as an estimate of the cost of the best solution going 

through the node n
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The A* Algorithm
A*-Search(initial-test)                    ;; functions cost, h, succ, and GoalTest are defined

open <- MakePriorityQueue(initial-state, NIL, 0, h(initial-state), h(initial-state))  
;; (state, parent, g, h, f)

while (not(empty(open)))
node 🡨 pop(open), state 🡨 node-state(node) 
closed 🡨 push (closed, node)
if GoalTest(state) succeeds return node
for each child in succ(state)

new-cost 🡨 node-g(node) + cost(state,child)
if child in open
   if new-cost < g value of child 
      update(open, child, node, new-cost, h(child), new-cost+h(child))

       elseif child in closed
   if new-cost < g value of child 

          insert(open, child, node, new-cost, h(child), new-cost+h(child))
          delete(closed,child)

else 
open 🡨 push(child, node, new-cost, h(child), new-cost+h(child))

return failure



A* Search: Example
• Travel: h(n) = distance(n, goal)  
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A* Search : Example



Admissible Heuristics

• we also require h be admissible:  
– a heuristic h is admissible if h(n) < h*(n) for all nodes n, 
– where h* is the actual cost of the optimal path from n to the 

goal  
• Examples: 

– travel distance straight line distance must be shorter than 
actual travel path 

– tiles out of place each move can reorder at most one tile 
distance of each out of place tile from the correct place each 
move moves a tile at most one place toward correct place  



Optimality of A*
• Let us assume that f is non-decreasing along each path 

– if not, simply use parent’s value 
– if that’s the case, we can think of A* as expanding f contours toward 

the goal; better heuristics make this contour more “eccentric”  
• Let G be an optimal goal state with path cost f*
• Let G2 be a suboptimal goal state with path cost g(G2) > f*. 

– suppose A* picks G2 before G (A* is not optimal) 
– suppose n is a leaf node on the path to G when G2 is chosen 
– if h is admissible, then f* >= f(n) 
– since n was not chosen, it must be the case that f(n) >= f(G2) 
– therefore f* >= f(G2), but since G2 is a goal, h(G2)=0, so f* >= g(G2) 
– But this is a contradiction --- G2 is a better goal node than G 
– Thus, our supposition is false and A* is optimal. 



Completeness of A*
• Suppose there is a goal state G with path cost f*

– Intuitively: since A* expands nodes in order of increasing f, it must 
eventually expand node G

• If A* stops and fails
– Prove by contradiction that this is impossible.
– There exists a path from the initial state to the node state 
– Let n be the last node expanded along the solution path
– n has at least one child, that child should be in the open nodes 
– A* does not stop until there are open list is empty (unless it finds a 

goal state). Contradiction.
• A* is on an infinite path 

– Recall that cost(s1,s2) > δ
– Let n be the last node expanded along the solution path
– After f(n)/δ the cumulative cost of the path becomes large enough 

that A* will expand n. Contradiction.



UCS, BFS, Best-First,  
and A*

• f = g + h      => A* Search
• h = 0           => Uniform cost search
• g = 1, h = 0 => Breadth-First search
• g = 0           => Best-First search



Road Map Problem
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8-queens
State contains 8 queens on the board
Successor function returns all states generated by moving a single 

queen to another square in the same column (8*7 = 56 next 
states)

h(s) = number of queens that attack each other in state s.

H(s) = 17 H(s) = 1



Heuristics : 8 Puzzle

1 2 3
8 5 6
7 4

1 2 3
8 6
7 5 4

1 2 3
8 5 6

7 4

1 2 3
8 4
7 6 5

1 2 3
8 5 6
7 4



8 Puzzle

• Reachable state : 9!/2 = 181,440

• Use of heuristics 
– h1 : # of tiles that are in the wrong position
– h2 : sum of Manhattan distance

h1 = 3

h2 = 1+2+2=5
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Effect of Heuristic 
Accuracy on 
Performance

• Well-designed heuristic have its branch close to 1
• h2 dominates h1 iff 

h2(n) ≥ h1(n), ∀ n
• It is always better to use a heuristic function with 

higher values, as long as it does not overestimate
• Inventing heuristic functions

– Cost of an exact solution to a relaxed problem is a good 
heuristic for the original problem

– collection of admissible heuristics
    h*(n) = max(h1(n), h2(n), …, hk(n))





A* summary

• Completeness 
– provided finite branching factor and finite cost per operator  

• Optimality
– provided we use an admissible heuristic  

• Time complexity 
– worst case is still O(bd) in some special cases we can do 

better for a given heuristic  
• Space complexity 

– worst case is still O(bd)



Relax Optimality

• Goals:
– Minimizing search cost
– Satisficing solution, i.e. bounded error in the 

solution
f(s) = (1-w) g(s) + w h(s)

– g can be thought of as the breadth first component
– w = 1  => Best-First search
– w = .5 => A* search
– w = 0  => Uniform search



Iterative Deepening A*

• Goals
– A storage efficient algorithm that we can use in practice
– Still complete and optimal

• Modification of A*
– use f-cost limit as depth bound
– increase threshold as minimum of f(.) of previous cycle

• Each iteration expands all nodes inside the contour 
for current f-cost

• same order of node expansion



IDA* Algorithm
IDA* (state,h) returns solution

f-limit <- h(state)
loop do
solution, f-limit 🡨 DFS-Contour(state, f-limit)
if solution is non-null return solution
if f-limit = ∞ return failure

end

DFS-Contour (node,f-limit) returns solution
if f (node) > f-limit return null, f(node)
if GoalTest(node) return node, f-limit
next-f 🡨 ∞
for each node s in succ(node) do
solution, new-f 🡨 DFS-Contour(s, f-limit)
if solution is non-null return solution, f-limit
next-f 🡨 Min(next-f, new-f)

end
return null, next-f



IDA* Properties

• Complete:
– if shortest path fits into memory

• Optimal:
– if shortest optimal path fits into memory

• Time Complexity: O(b2d)

• Space Complexity: O(bd)



Mapquest

• http://www.mapquest.com/
• MapQuest uses a "double Dijkstra" algorithm 

for its driving directions, working backward 
from both the starting and ending points at 
once. MapQuest uses a "double Dijkstra" 
algorithm for its driving directions, working 
backward from both the starting and ending 
points at once. 

• the algorithm uses heuristic tricks to minimize 
the size of the graph that must be searched. 


