
Threading using C# and .Net

cs795 Satish Lakkoju

• Outline :
▫ Threads
▫ System.Threading Namespace .
▫ Thread Class – its methods and properties.
▫ Thread Synchronization.
▫ Monitors
▫ C# Lock keyword.
▫ Reader/Writer Locks
▫ Conclusion

Threads :
• Thread is the fundamental unit of execution.

• More than one thread can be executing code
inside the same process (application).

• On a single-processor machine, the operating
system is switching rapidly between the threads,
giving the appearance of simultaneous
execution.

 • With threads you can :

▫ Maintain a responsive user interface while
background tasks are executing

▫ Distinguish tasks of varying priority

▫ Perform operations that consume a large amount
of time without stopping the rest of the application

 • System.Threading Namespace
▫ Provides classes and interfaces that enable

multithreaded programming.

▫ Consists of classes for synchronizing thread
activities .

▫ Chief among the namespace members is Thread
class

 • Thread Class
- Implements various methods & properties that

allows to manipulate concurrently running
threads.

- Some of them are :
� CurrentThread
� IsAlive
� IsBackground
�Name
� Priority
� ThreadState

 • Starting a thread :

Thread thread = new Thread(new ThreadStart (ThreadFunc));
//Creates a thread object
// ThreadStart identifies the method that the thread executes when it
//starts

thread.Start();
//starts the thread running

Thread Priorities :
Controls the amount of CPU time that can be allotted to a thread.
ThreadPriority.Highest
ThreadPriority.AboveNormal
ThreadPriority.Normal
ThreadPriority.BelowNormal
ThreadPriority.Lowest

 • Suspending and Resuming Threads
▫ Thread.Suspend temporarily suspends a running

thread.
▫ Thread.Resume will get it running again
▫ Sleep : A thread can suspend itself by calling

Sleep.

▫ Difference between Sleep and Suspend
- A thread can call sleep only on itself.
-Any thread can call Suspend on another thread.

 • Terminating a thread
▫ Thread.Abort() terminates a running thread.
▫ In order to end the thread , Abort() throws a ThreadAbortException.

▫ Suppose a thread using SQL Connection ends prematurely , we can close
the the SQL connection by placing it in the finally block.

- SqlConnection conn ………
 try{

 conn.open();
 ….

 }
 finally{

 conn.close();//this gets executed first before the thread ends.
 }

 • A thread can prevent itself from being terminated
with Thread.ResetAbort.

 - try{
…
}

 catch(ThreadAbortException){
Thread.ResetAbort();

}

• Thread.Join()
▫ When one thread terminates another, wait for the

other thread to end.

• Thread Synchronization :
▫ Threads must be coordinated to prevent data

corruption.

• Monitors
▫ Monitors allow us to obtain a lock on a particular

object and use that lock to restrict access to critical
section of code.

▫ While a thread owns a lock for an object, no other
thread can acquire that lock.

▫ Monitor.Enter(object) claims the lock but blocks if
another thread already owns it.

▫ Monitor.Exit(object) releases the lock.

• Void Method1()
 {

….
Monitor.Enter(buffer);
try
{

critical section;
}
finally
{

Monitor.Exit(buffer);
}

}

Calls to Exit are enclosed in finally blocks to ensure that they’re
executed even when an exception arises.

• The C # Lock Keyword :

lock(buffer){
…….
}

 is equivalent to

Monitor.Enter(buffer);
try
{
critical section;

}
finally
{
Monitor.Exit(buffer);

}
- Makes the code concise.
- Also ensures the presence of a finally block to make sure the lock

is released.

• Reader/Writer locks :

▫ Prevent concurrent threads from accessing a resource simultaneously.

▫ Permit multiple threads to read concurrently.

▫ Prevent overlapping reads and writes as well as

 overlapping writes.

▫ Reader function uses :

-AcquireReaderLock

-ReleaseReaderLock

▫ Writer funciotn uses :

-AcquireReaderLock

-ReleaseReaderLock

ReleaseLocks are enclosed in finally blocks to be absolutely certain that they
are executed

• Drawback :
Threads that need writer locks while they hold reader locks will result in
deadlocks.
Solution is UpgradeToWriterLock and DowngradeFromWriterLock methods.

rwlock.AcquireReaderLock(Timeout.Infinite)
try{

 // read from the resource guarded by the lock
…..
//decide to do write to the resource

LockCookie cookie = rwlock.UpgradeToWriteLock(Timeout.Infinite)

try{
// write to the resource guarded by the lock
…..
}
finally{

rwlock.DowngradeFromWriterLock(ref cookie);
}

 }
finally{

rwlock.ReleaseReaderLock();
}

 • MethodImpl Attribute
▫ For synchronizing access to entire methods.
▫ To prevent a method from be executed by more

than one thread at a time ,

[MehtodImpl] (MethodImplOptions.Synchronized)]
Byte[] TransformData(byte[] buffer)
{
……
}
Only one thread at a time can enter the method.

• Conclusion :

▫ Using more than one thread, is the most powerful
technique available to increase responsiveness to
the user and process the data necessary to get the
job done at almost the same time.

• References :
▫ Programming Microsoft .NET – Jeff Prosise
▫ http://msdn2.microsoft.com/
▫ http://cs193n.stanford.edu/handouts/pdf/37%20

Streams,%20Multithreading.pdf

