
УРОК ФИЗИКИ В 10 КЛАССЕ

• Сила тяжести. Вес тела. Сила упругости

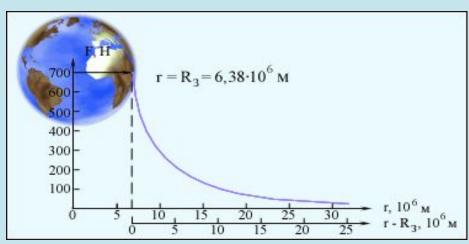
ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ

- 1. Что называется силой тяготения? Где она проявляется ?
- 2. Сформулировать ЗВТ
- 3. Каковы пределы применимости ЗВТ?
- 4. Как называется коэффициент в формуле ЗВТ?
- 5. Как опытным путем было установлено значение G?
- 6. Как направлены силы тяготения?
- 7. Как измерить массу Земли?
- 8. Почему тела падают с одинаковым ускорением?
- 9. Что общего в движении падающего яблока и Луны?
- 10. Почему не приближаются друг к другу предметы, находящиеся в комнате, хотя они взаимно притягиваются?

ПРОЯВЛЕНИЯ ЗАКОНА ВСЕМИРНОГО ТЯГОТЕНИЯ

• Одним из проявлений силы всемирного тяготения является *сила тяжести*. Так принято называть силу притяжения тел к Земле вблизи ее поверхности. Так как масса планеты велика, то и сила притяжения к ней существенно превышает силу взаимного гравитационного притяжения любых двух тел.

СИЛА ТЯЖЕСТИ

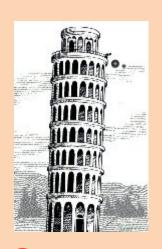

– сила, с которой Земля притягивает к себе различные тела

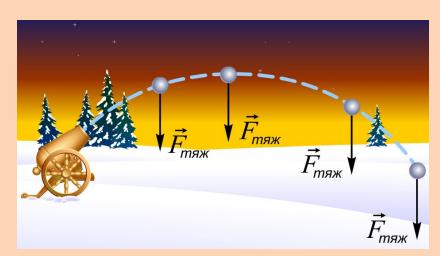
$$F = mg$$

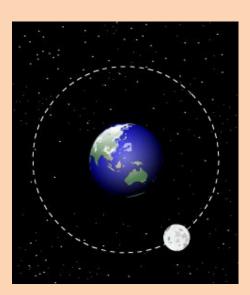
Приложена к центру тела, направлена к центру Земли, убывает при удалении

от Земли.

$$g=9.8 \text{M/}c^2$$

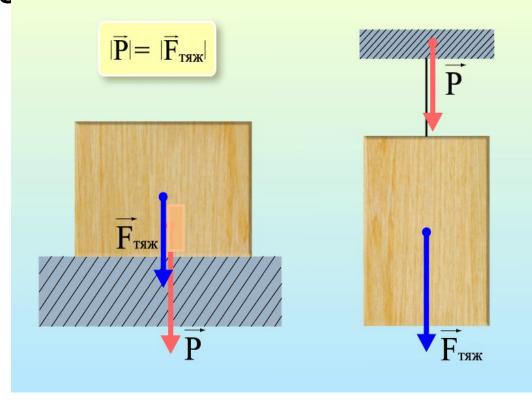

ДВИЖЕНИЕ ПОД ДЕЙСТВИЕМ силы тяжести


- Движение тела под действием силы тяжести называется свободным падением.
- Так как гравитационная сила пропорциональна массе, то все тела вблизи Земли падают с одинаковым ускорением

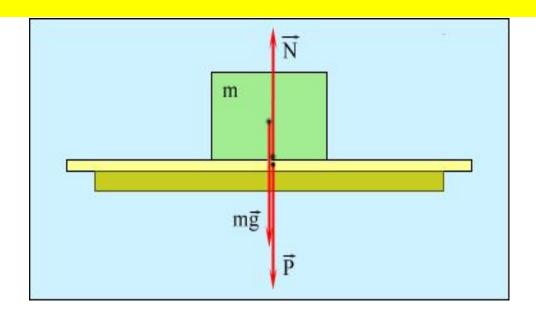

$$a = \frac{F_T}{m} = \frac{mg}{m} = g$$

виды движения

- а) прямолинейное
- б) криволинейное (по параболе)
- в) по окружности (эллипсу)


От чего зависит вид траектории?

ВЕС ТЕЛА


– сила, с которой тело давит на опору

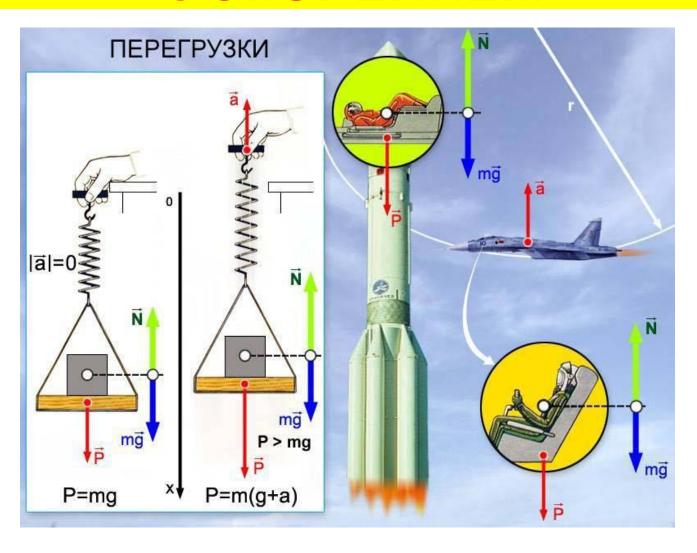
или растягиє

нить подвеса. Вес тела приложен к опоре (подвесу).

ВЕС ТЕЛА

$$P = -N$$

 N – сила реакции опоры или сила нормального давления (направлена перпендикулярно поверхности)

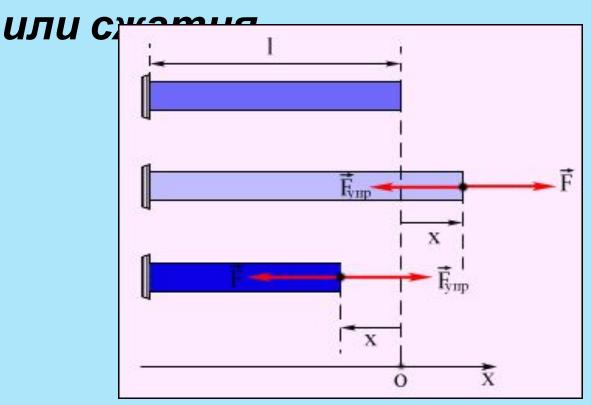

ВЕС ТЕЛА, ДВИЖУЩЕГОСЯ С УСКОРЕНИЕМ

 При движении тела вдоль вертикальной линии с ускорением вес тела может изменяться

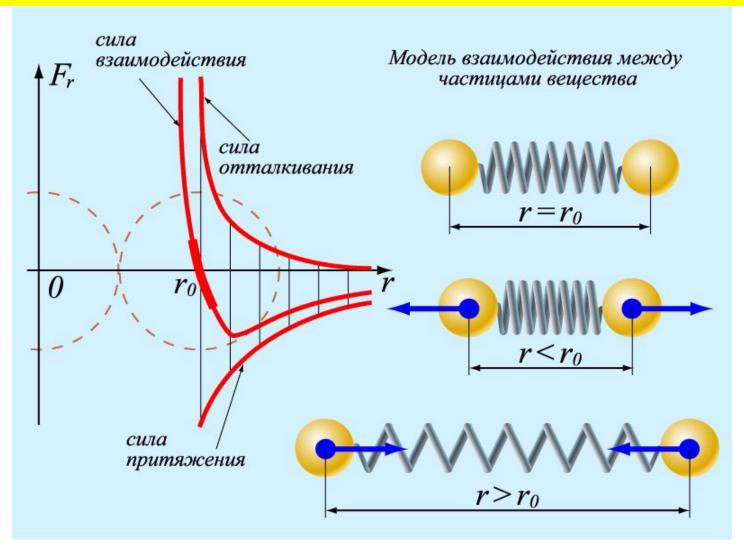
$$a = 0$$
 $a \uparrow (вверх)$ $a \downarrow (вниз)$ $P = mg$ $P = m(g + a)$ $P = m(g - a)$

<u>Невесомость</u> – состояние тела, при котором вес равен нулю

ВЕС ТЕЛА, ДВИЖУЩЕГОСЯ С УСКОРЕНИЕМ



СИЛА УПРУГОСТИ


• При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости

СИЛА УПРУГОСТИ

• Простейшим видом деформации является *деформация растяжения*

КАК ВОЗНИКАЕТ СИЛА УПРУГОСТИ

ЗАКОН ГУКА

 сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

$$F = -kx$$

- k коэффициент жесткости (Н/м), зависит от материала пружины и геометрических размеров
- **х** удлинение тела (м) **х** = ℓ_2 ℓ_1

ОСОБЕННОСТИ СИЛ УПРУГОСТИ

• 1) Возникают одновременно у двух

тел

- 2) направлены перпендикулярно поверхности
- 3) противоположны смещению

СРАВНЕНИЕ СИЛ

	Сила тяжести	Сила упругости	Вес тела
Природа сил	Гравитацион-	Электоро-	Электоро-
	ная	магнитная	магнитная
Направление	К центру Земли	Против деформации	Различно
Точка	Центр масс	Точки контакта с	Опора или
приложения	тела	внешней силой	подвес
Зависит от	массы тела и	механических	массы тела,
	высоты над	свойств тела и	ускорения,
	поверхностью	деформации	внешней среды
Формула	F = mg	F = kx	$P = m(g\pm a)$