

НЕДОБУХ ТАТЬЯНА АЛЕКСЕЕВНА Доцент кафедры радиохимии и прикладной экологии ФтИ

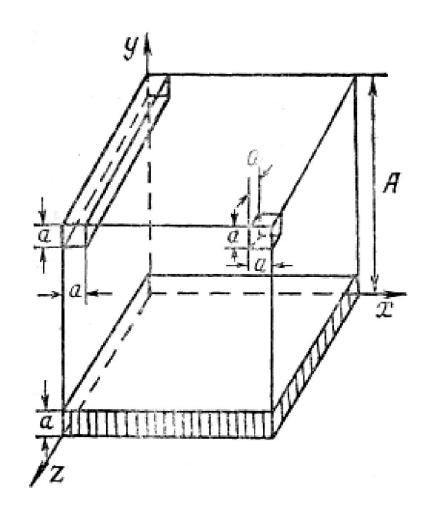
Содержание лекции

Дисперсные системы. Гетерогенность и дисперсность. Образование и строение двойного электрического слоя. Строение мицеллы. Устойчивость коллоидных систем. Получение дисперсных систем.

Признаки объектов коллоидной химии

- **Гетерогенность** или многофазность, выступает в коллоидной химии как признак, указывающий на наличие межфазной поверхности, т.е. поверхностного слоя, который не просто определяет граничную область между фазами, но и представляет коллоидное состояние вещества и обуславливает характерные свойства этих объектов.
- Дисперсность (раздробленность) определяется размерами и геометрией тела. Раздробленность определяется размером тела по той оси, уменьшением которого она достигнута.
- **Дисперсность** количественный параметр, характеризующий степень раздробленности, размер межфазной поверхности **Гетерогенность** указывает на качественную характеристику объектов. Если существует гетерогенность, то существует и дисперсность.

Форма дисперсий


Возможно образование различных дисперсий при уменьшении куба по трем его осям:

по y — пленка или поверхностный слой; по xy — нить или капилляр, по xyz — образование мелких частиц.

 $\begin{subarray}{ll} \it{Paздробленность} & \mbox{определяется размером} \\ \it{тела по той оси, уменьшением} \\ \it{которого она достигнута, т.е.} \\ \it{наименьшим размером } \it{a}. \\ \end{subarray}$

Дисперсность D = 1/a.

Удельная поверхность $S_{yд.} = S/V$, определяемая отношением площади межфазной поверхности к объему тела.

Классификация дисперсных систем

Классификация по структуре:

свободно дисперсные, в которых частицы дисперсной фазы не связаны между собой и могут перемещаться свободно (суспензии, эмульсии, золи); связно дисперсные, в которых одна из фаз не перемещается свободно, поскольку структурно закреплена. К ним относятся капиллярно-пористые тела, называемые диафрагмами; мембраны: тонкие пленки, обычно полимерные, проницаемые для жидкостей и газов; гели и студни; пены — жидкие сетки с воздушными ячейками, твердые растворы.

Классификация по межфазному взаимодействию:

лиофильные, для которых характерно сильное межмолекулярное взаимодействие между веществом дисперсной фазы и дисперсионной среды за счет межмолекулярных сил на границе раздела фаз. Это взаимодействие приводит к образованию сольватных (гидратных, в случае воды) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы, и как в обычных растворах, называется сольватацией (гидратацией);

лиофобные, для которых характерно слабое взаимодействие между веществом дисперсной фазы и дисперсионной среды.

Классификация по дисперсности

Частицы с размерами $< 10^{-7}$ см (1 нм, 10 Å) не относятся к коллоидным системам и образуют молекулярные или ионные истинные растворы.

Свободно дисперсные системы подразделяются на:

- Ультрамикрогетерогенные $10^{-7} 10^{-5}$ см (1 100 нм)
- Микрогетерогенные $10^{-5} 10^{-3}$ см (0,1-10 мкм)
- Грубодисперсные > 10⁻³ см.
 - Связно дисперсные системы классифицируются в зависимости от размера пор:
- микропористые с размером пор до 2 нм;
- переходнопористые с размером пор 2 200 нм;
- макропористые с размером пор > 200 нм.

Указанные пределы являются приближенными и зависят от методов определения и природы объектов исследования. Как правило, все твердые частицы, какие бы размеры они не имели, состоят из частиц коллоидных размеров, образуя сложную иерархическую структуру.

плассификация по агрегаптному состтоянию						
	Дисперсионная	Дисперсная	Условное	Название системы и примеры		
	среда	фаза	обозначение			

Твердые гетерогенные системы:

Капиллярные системы: жидкость в

Суспензии и золи: пульпы, взвеси,

Эмульсии: природная нефть, кремы,

минералы, сплавы, бетон.

Пористые тела: адсорбенты и

Газовые эмульсии и пены:

Аэрозоли: пыли, дымы.

флотационные, мыльные пены.

Аэрозоли: туманы, промышленные

Коллоидная система не образуется

пористых телах.

пасты, илы.

молоко.

облака

катализаторы в газах.

T/T

Ж/Т

 Γ/T

Т/Ж

Ж/Ж

Г/Ж

Τ/Γ

Ж/Г

 Γ/Γ

Твердая

Твердая

Твердая

Жидкая

Жидкая

Жидкая

Газообразная

Газообразная

Газообразная

1.

3.

4.

5.

6.

7.

8.

9.

Твердая

Жидкая

Твердая

Жидкая

Твердая

Жидкая

газообразная

газообразная

Газообразная

М

Параметры поверхности

Поверхностная энергия $G^S = \sigma \cdot S$.

Поверхностное натяжение определяет резкость перехода от одной фазы к другой, различие между соприкасающимися фазами. Чем более резко различаются по природе сопряженные фазы, тем больше поверхностное натяжение.

Удельная поверхность тела определяется отношением площади его поверхности S_1 , между фазами 1 и 2 к объему тела V:

$$S_{y\partial .}=S_{1,2}$$
 / V . $S_{y\partial .}=rac{k}{a}=kD,$ где k -коэффициент формы частицы

Изменение удельной поверхности существенно зависит от формы частиц. Например. A >> a:

частиц. Например, A >> a: для пленки —
$$S_{y\partial .} = \frac{2A^2}{A^2a} = \frac{2}{a}$$
 ;

для бруска –
$$S_{y\partial} = \frac{4Aa}{Aa^2} = \frac{4}{a}$$
 ;

для куба -
$$S_{y\partial.} = \frac{6a^2}{a^3} = \frac{6}{a}$$
 .

Удельная поверхность кубических тел в зависимости от степени измельчения

a, cm	Число частиц	$S_{\rm yg.}$, cм ² /cм ³
1	1	6
10 ⁻¹ (1 мм)	10^3	6 · 10
10-4 (1 мкм)	10^{12}	$6 \cdot 10^4 (6 \text{m}^2/\text{cm}^3)$
10-7 (1 нм)	10 ²¹	$6 \cdot 10^7 (6000 \text{ m}^2/\text{cm}^3)$

Образование двойного электрического слоя

1. ДЭС образуется в результате поверхностной ионизации - перехода ионов или электронов из одной фазы в другую.

ДЭС образуется на межфазной поверхности между водой и малорастворимым AgI. При растворении AgI в воду преимущественно переходят катионы Ag^+ , т.к. они сильнее гидратируются, чем I^- . В результате поверхность иодида серебра будет иметь некоторый избыток отрицательных ионов иода (потенциалопределяющих ионов), который нейтрализует избыток положительных ионов серебра в прилегающем водном слое (противоионы).

Изоэлектрическая точка (ИЭТ) - отрицательный логарифм концентрации потенциалопределяющего иона, при которой суммарный электрический заряд на поверхности равен 0 (в отсутствии посторонних ионов):

$$ИЭТ_{+} = -\lg C_{+}$$
 или $ИЭТ_{-} = -\lg C_{-}$.

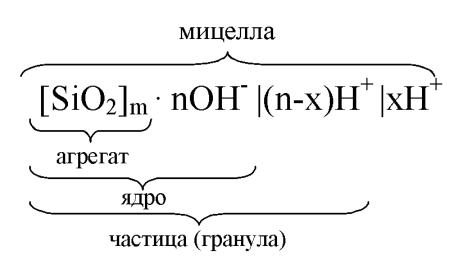
ИЭТ связана с произведением растворимости:

$$\Pi P = C_+^{\nu_+} \cdot C_-^{\nu_-}$$
 или $\lg \Pi P = \nu_+ \lg C_+ + \nu_- \lg C_-$ где ν_+ и ν_- - стехиометрические коэффициенты ионов.

2. ДЭС может образовываться при избирательной адсорбции в межфазном слое ионов электролитов, не входящих в состав веществ, образующих фазы, т.е. в результате адсорбции примесей.

Например, добавление в систему металл-вода NaCl приводит к избирательной адсорбции Cl^- на поверхности металла. Появляется избыточный отрицательный заряд на поверхности металла и положительный (Na^+) в ближайшем слое раствора, т.е. на межфазной поверхности образуется двойной электрический слой.

3. ДЭС может образовываться благодаря ориентированию полярных молекул сопряженных фаз в результате их взаимодействия.


- Этот механизм реализуется в том случае, если составляющие фазы системы не способны обмениваться зарядами. Следовательно, ДЭС образуется в результате адсорбции недиссоциирующих полярных молекул, находящихся в растворе.
- ДЭС могут образовывать и неполярные молекулы и атомы, которые могут поляризоваться в силовом поле поверхности раздела.

Строение ДЭС

- 1. Согласно представлениям Гельмгольца заряды располагаются в виде двух рядов разноименных ионов: ряд потенциалопределяющих ионов на расстоянии, равном их радиусу в несольватированном состоянии и прилегающий к нему ряд противоионов. Толщина электрического слоя близка к молекулярным размерам или размерам сольватированных ионов.
- 2. ДЭС имеет диффузное (размытое) строение и все противоионы находятся в его диффузной части.
- 3. Современная теория ДЭС: слой противоионов состоит из двух частей.
- Одна часть примыкает непосредственно к межфазной поверхности и образует адсорбционный слой (слой Гельмгольца) толщиной δ, равной радиусу гидратированных (сольватированных) ионов, его составляющих.
- Другая часть противоионов находится в диффузной части диффузный слой с потенциалом ϕ_{δ} и толщиной λ , который может быть значительным, что зависит от свойств и состава системы.

Строение мицеллы

На поверхности оксидов, находящихся в растворе, в качестве потенциалопределяющих ионов выступают H⁺ и OH⁻ в зависимости от кислотности среды. В результате преобладающей адсорбции одного из этих ионов поверхность оксида приобретает соответствующий заряд, причем знак заряда поверхности в той или иной области рН определяется кислотно-основными свойствами оксида.

Например, SiO_2 обладает ярко выраженными кислыми свойствами, и поэтому в широкой области рН (выше ИЭТ = 2,0) его поверхность заряжена отрицательно

Устойчивость дисперсных систем

- Седиментационная устойчивость устойчивость к осаждению дисперсной фазы, т.е. способность системы сохранять равномерное распределение частиц дисперсной фазы по объему дисперсионной среды или устойчивость системы к разделению фаз;
- Агрегативная устойчивость устойчивость к агрегации ее частиц.
- Агрегативно неустойчивые системы системы, в которых протекают процессы самопроизвольного укрупнения частиц, т.е. происходит снижение поверхностной энергии засчет уменьшения удельной поверхности.

Укрупнение частиц может идти двумя путями:

- перенос вещества от мелких частиц к крупным. В результате мелкие частицы постепенно растворяются, а крупные растут;
- процесс коагуляции, заключающийся в слипании, слиянии частиц. Это наиболее характерный и общий процесс для дисперсных систем.
- В общем случае под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы. В разбавленных системах коагуляция приводит к потере седиментационной устойчивости.

Термодинамические факторы устойчивости дисперсных систем

- Электростатический фактор заключается в уменьшении межфазного натяжения вследствие возникновения двойного электрического слоя на поверхности частиц. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов.
- Адсорбционно-сольватный фактор состоит в уменьшении межфазного натяжения при взаимодействии частиц дисперсной фазы со средой (благодаря адсорбции и сольватации).
- Энтропийный фактор действует в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему (как и распределение растворенного вещества в истинных растворах).

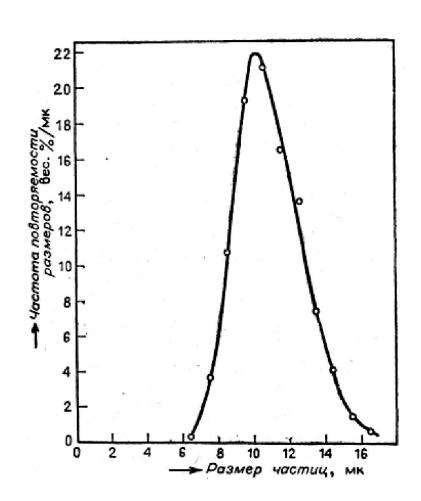
Кинетические факторы устойчивости дисперсных систем

- Структурно механический фактор. Его действие обусловлено тем, что на поверхности частиц имеются пленки, обладающие упругостью и механической прочностью, разрушение которых требует затраты энергии и времени.
- Гидродинамический фактор снижает скорость коагуляции благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.

Для реальных систем наиболее характерны смешанные факторы. Особенно высокая устойчивость наблюдается при действии термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.

Каждому фактору устойчивости соответствует специфический метод его нейтрализации.

Получение дисперсных систем


Существует два основных способа получения коллоидов: дисперсионный и конденсационный.

Дисперсионным способом, например, получают лиофильные коллоидные растворы при самопроизвольном распускании или растворении в подходящем растворителе. Для лиофобных характерны механические способы — дробление или истирание.

Химическая конденсация — конденсационное выделение новой фазы из пересыщенного раствора. Системы с размерами частиц 10^{-6} — 10^{-7} см обычно получают конденсационными методами.

Осаждение из гомогенных растворов

Получение порошков UO, со сферической или почти сферической формой частиц с диаметром около 10 мкм. Осаждение проводят из кипящего раствора азотнокислого уранила, содержащего в качестве донора аммиака мочевину. В результате гидролиза мочевины при повышенной температуре происходит контролируемое выделение аммиака и, следовательно, повышение рН.

$$CO(NH_2)_2 + H_2O \xrightarrow{t^o} CO_2 \uparrow +2NH_3$$

Распределение по размерам частиц UO₂, полученной по мочевинному методу

Выводы

- Рассмотрены основные характеристики дисперсных систем
- Дана классификация дисперсных систем
- Проанализированы процессы, приводящие к образованию дисперсных систем.
- Рассмотрены факторы, обеспечивающие устойчивость дисперсных систем.

В целом эволюция дисперсных систем происходит в результате перехода от истинных растворов через процессы моноядерного и полиядерного комплексообразования к образованию коллоидов, которые подвержены процессам коагуляции, пептизации и стабилизации, к образованию осадков.

Библиографический список

Строение и свойства адсорбентов и катализаторов/ Под ред. Б.Г. Линсена. М.: Мир. 1973. 653 с.

Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы/ Ю.Г. Фролов. М.: Химия. 1982. 400 с.