УРОК 66. Тема урока

Канонический вид многочлена с одной переменной

Theme of the lesson

The canonical form of a polynomial with one variable.

Цели обучения Lesson objective

- 10.2.1.1 знать определение многочлена с несколькими переменными и приводить его к стандартному виду, определять степень многочлена стандартного вида;
- 10.2.1.2 уметь распознавать симметрические и однородные многочлены;
- 10.2.1.3 уметь распознавать многочлен с одной переменной и приводить его к каноническому виду;
- 10.2.1.4 находить старший коэффициент, степень и свободный член многочлена с одной переменной

Изучение нового материала

1. Многочлен $P_n(x)$ относительно переменной x вида: $P_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$,

где a_0 , a_1 , a_2 , ..., a_n - действительные числа и $a_0 \neq 0$, называется **многочленом**, **расположенным по убывающим степеням** x, или многочленом, представленным в **каноническом виде**.

Числа a_0 , a_1 , a_2 , ..., a_n называют его коэффициентами, одночлен $a_0 x^n$ - его **старшим членом**, a_n - **свободным членом**, число n - **степенью многочлена** (n - натуральное число).

Изучение нового материала

2. Симметрические многочлены от двух переменных Определение. Многочлен f (x,y) называют симметрическим, если он не изменяется при замене x на y,a y на x.

Многочлен $x^2y + xy^2$ - симметрический. Напротив многочлен $x^3 - 3y^2$ не является симметрическим: при замене х на у, он превращается в многочлен $y^3 - 3x^2$, который не совпадает с первоначальным.

Элементарные симметрические многочлены от x и y $t_1 = x + y$ $t_2 = xy$

Теорема. Любой симметрический многочлен от x и y можно представить в виде многочлена от $t_1 = x + y$ и $t_2 = xy$

Изучение нового материала

3. Однородные многочлены.

Определение. Многочлен от двух переменных, такой что степень каждого его члена равна одному и тому же числу

k, называют <u>однородным</u> многочленом степени k.

$$P(u;v) = 2u^2 - 7uv + 9v^2$$

- однородный многочлен второй степени,

$$P(u; v) = u^3 - 15u^2v + 5v^3$$

- однородный многочлен третьей степени

Individual Work (self-evaluation)

- Which of the polynomials
 - 1) $2x^2y^3 + 3y^2x^3 y^5$
 - 2) $x^2y^3 + y^2x^3 + x^5 + y^5$
 - 3) $x^2y^2 + y^3x^3 + x^4y^4$
 - 4) $x^4 + 2xy^5 + y^4 x^3y^2 x^2y^3 + 2x^5y$
 - 5) $x^3 + y^3 + z^3 + 3xyz$
 - 6) $x^2y^2z^2 xy^2z^3 yx^2z^3 zy^2x^3$
 - 7) $x y + x^2 y^2 y^3 + x^3 + x^4 y^4$

are a) symmetric; b) homogeneous?

Answer: a)2, 3, 4, 5, 6 b) 1, 2, 5, 6

Individual Work (self-evaluation)

2. Lay polynomial factoring

$$a^4 + a^2b^2 + b^4$$

Answer:
$$(a^2 - ab + b^2)(a^2 + ab + b^2)$$

3. Consider the polynomial in the canonical form $(2x^3 + 5x)^4$

Answer:

$$16x^{12} + 160x^{10} + 600x^8 + 1000x^6 + 625x^4$$

Front work

Задания

1. Дано
$$(2x^3 - 4x + 3)^2 + (x^5 - x + 1)^6$$
. Найдите:

- а) степень многочлена;
- b) старший коэффициент и свободный член;
- с) сумму коэффициентов многочлена;
- d) сумму коэффициентов при четных степенях.

Критерий оценивания	№ задания	Дескриптор	Балл
		Обучающийся	
Определяет многочлен с одной переменной и его элементы	1	находит степень многочлена;	1
		находит старший коэффициент и свободный член;	1
		находит сумму коэффициентов многочлена;	1
		находит сумму коэффициентов при четных степенях;	1

Мозговой штурм

(Подготовка к изучению нового материала)

- 1.Что вы понимаете под выражением «корень многочлена»?
 - 2. В чем на ваш взгляд состоит важность нахождения корня многочлена?
 - 3. Сколько действительных корней может иметь многочлен четной (нечетной степени)?

Домашнее задание

Given the polynomials $P(x) = x^4 - x^3 + 2x - 1$, $Q(x) = 3 - x + 2x^3$ and

$$T(x) = 3x^2 - 2$$
 evaluate

(a)
$$2T(x) - Q(x)$$
 (b) $P(x) + 4T(x)$ (c) $T(x) \times Q(x)$

(b)
$$P(x) + 4T(x)$$

(c)
$$T(x) \times Q(x)$$

(d)
$$P(x)Q(x)$$

(e)
$$[Q(x)]^2$$

(d)
$$P(x)Q(x)$$
 (e) $[Q(x)]^2$ (f) $[T(x)]^2 - 9P(x)$

Разложите на множители:

a)
$$x^6 + y^6$$

6)
$$m^9 - n^9$$

Рефлексия

- Что получилось?
- Где возникли трудности?
- Что необходимо повторить?