

ПЛАН ЛЕКЦИИ

- 1. Физические основы радиоактивности.
- 2. Основные дозиметрические соотношения.
- 3. Биологическое действие ионизирующего излучения.
- 4. Принципы защиты от ионизирующего излучения.
- 5. Основные меры защиты при работе с радиоактивными веществами и источниками ионизирующих излучений.
- 6. Гигиена применения радиоактивных изотопов в лечебных учреждениях.

Радиационные эффекты облучения людей

Соматические	Соматико-стохастические (безпороговые)	Генетические
Острая лучевая болезнь	Сокращение продолжительности жизни	Доминантные генные мутации
Хроническая лучевая болезнь	Лейкозы (злокачественные изменения кровообразующих клеток)	Рециссивные генные мутации
Возникает при дозе более 100 бэр	Могут возникнуть при любой дозе, отдичной от нуля (20-25 лет – латентный период возникновения этих эффектов)	Доза в 10-100 Р удваевает спонтанный темп мутирования у человека

ОСНОВНЫЕ МЕРЫ ЗАЩИТЫ ПРИ РАБОТЕ С РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ И ИСТОЧНИКАМИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Учитывая высокую биологическую активность ионизирующего излучения и всё возрастающее число людей, контактирующих с PB, необходимо предусмотреть надёжную защиту от переоблучения и распространения радиоизотопов в окружающую среду.

Защита работающих с радионуклидами и источниками ионизирующих излучений и охрана внешней среды от радиоактивных загрязнений достигается осуществлением комплекса мероприятий. К ним следует отнести коллективные и индивидуальные меры защиты.

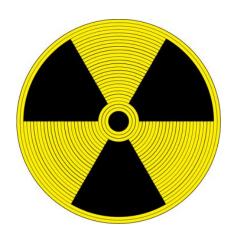
Коллективные меры защиты:
□законодательные;
организационные;
□планировочные;
инженерно-технические и санитарно-гигиенические.
Индивидуальные меры защиты:
□соблюдение мер личной безопасности;
□использование индивидуальные средств защиты;
□лечебно-профилактические мероприятия.

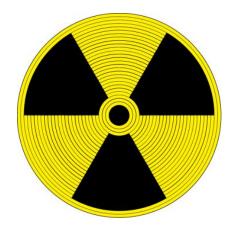
ОСНОВНЫЕ САНИТАРНЫЕ ПРАВИЛА РАБОТЫ С РВ

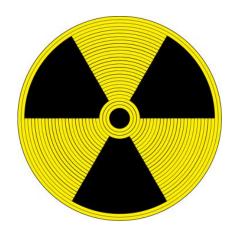
- 1. К размещению учреждений и предприятий для работы с РВ и источниками ионизирующих излучений.
- 2. К организации работ с ними.
- 3. К получению, учету, хранению и перевозке РВ.
- 4. Работа с закрытыми источниками.
- 5. Работа с РВ в открытом виде.
- 6. К вентиляции, пылегазоочистке и отоплению.
- 7. К водоснабжению и канализации.
- 8. К сбору, удалению, обеззараживанию твердых и жидких радиоактивных отходов.

ПРИНЦИПЫ ЗАЩИТЫ ОТ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

При выполнении работ с источниками излучений для защиты очень важно использовать принципы и методы, которые учитывают физические свойства ионизирующего излучения. Эти принципы и методы наибольшее значение имеют для защиты от внешнего облучения.


Используют 4 основных принципа защиты:


- □ Количеством или активностью.
- □ Экранированием.


<u>Основной защиты</u> человека от ионизирующего излучения является <u>установление допустимых дозоблучения для работающих в РВ и всего населения.</u>

ЛІМІТИ ДОЗИ ОПРОМІНЕННЯ (м3в/рік)

Найменування дози	Категорія опромінених осіб		
	$A^{a,\delta}$	B ^a	B ^a
Ліміт ефективної дози	20 ^a	2	1
Ліміти еквівалентної дози зовнішнього опромінення:			
- для кришталика ока	150	15	15
- для шкіри	500	50	50

ФОРМУЛЫ ДЛЯ РАСЧЕТА ЗАЩИТЫ БЕЗ ЭКРАНИРОВАНИЯ

Исходные величины могут быть представлены в единицах активности, тогда используется для расчета защиты вместо формулы Д = P * t следующая формула:

$$P = \sqrt{\frac{M \cdot 8.4 \cdot t}{A \cdot 10^4}}$$
 или $R = \sqrt{\frac{Q \cdot 3r}{A \cdot 10^4}} \cdot t$ $Q = \frac{A \cdot R^2 \cdot 10^4}{R \cdot t}$

Q - активность препарата (в Мки),

Ку - гамма постоянная элемента (Р*см2/Мки*ч),

<u>Гамма постоянная (Ку)</u> - мощность экспозиционной дозы в Р/ч на расстоянии I см от препарата изотопа активностью I мКи.

R - расстояние до источника (в м),

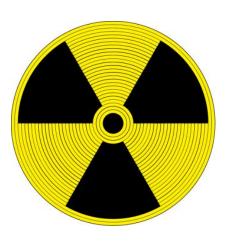
104- коэффициент перевода метров в см,

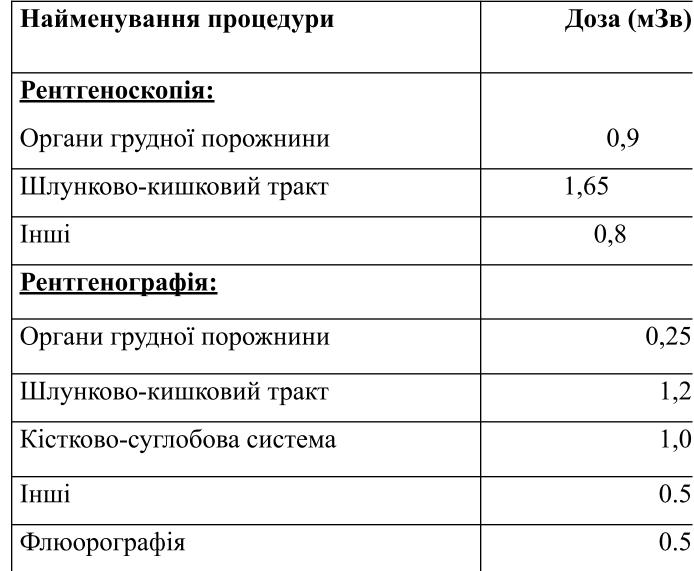
М - гамма-активность препарата в мг-экв/радия,

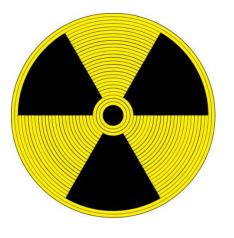
8,4 - гамма-постоянная радия.

Во всех случаях величина Д берется предельно допустимая. При использовании экранов расчет защиты сводится к определению толщины экранируемого материала в зависимости от необходимой кратности ослабления, вида излучения и его энергии.

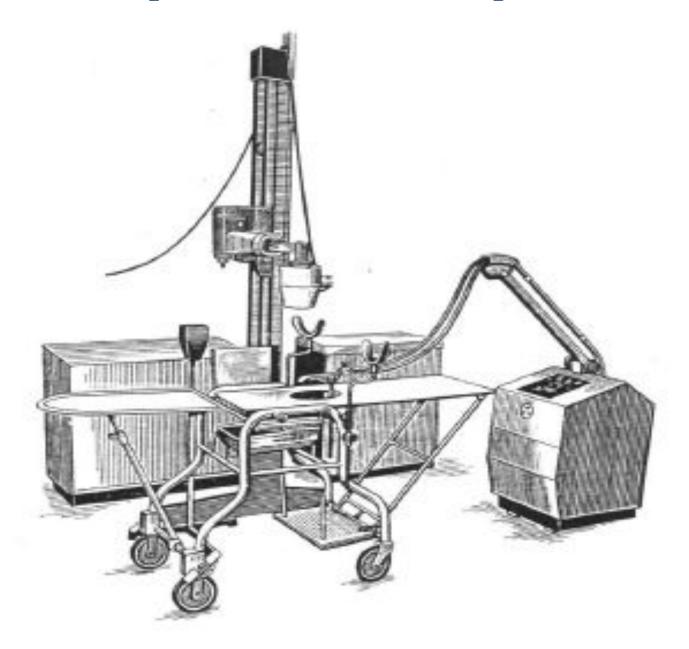
ЗНАЧЕННЯ ДОПУСТИМИХ РІВНІВ ВМІСТУ РАДІОНУКЛІДІВ 137 CS І 90 SГ В ПРОДУКТАХ ХАРЧУВАННЯ І ПИТНІЙ ВОДІ

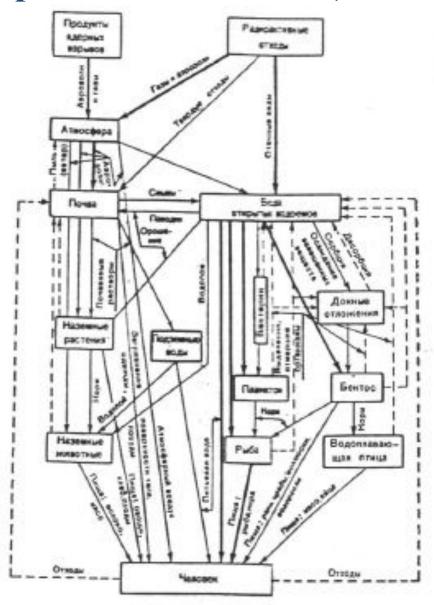

№п\п	Найменування продукту	¹³⁷ Cs	⁹⁰ Sr
1.	Хліб, хлібопродукти	20	5
2,	Картопля	60	20
3.	Овочі (листові, коренеплоди, столова зелень)	40	20
4.	Фрукти	70	10
5.	М'ясо і м'ясопродукти	200	20
6.	Риба і рибопродукти	150	35
7.	Молоко і молокопродукти	100	20
8.	Яйця (шт.)	6	2
9.	Вода	2	2
10.	Молоко згущене та концентроване	300	60
11.	Молоко сухе	500	100
12.	Ягоди і гриби сухі дикорослі	2500	250
13.	Ягоди і гриби свіжі дикорослі	500	50
14.	Лікарські рослини	600	200
15.	Спеціальні продукти дитячого харчування	40	5
16.	Інші продукти	600	200


Продукт дозволяється вживати тільки в тому випадку, якщо дотримується наступне співвідношення:

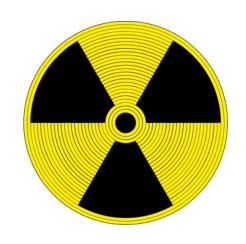

$$\frac{Ccs}{\Box Pcs} + \frac{Csr}{\Box Psr} \le 1$$

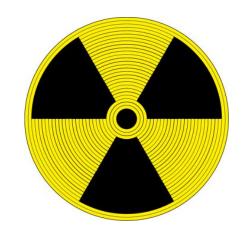
де C_{Cs} і $C_{\$r}$ - питома активність ^{137}Cs і в харчовому продукті; $ДP_{Cs}$ і JP_{Sr} - нормативи змісту ^{137}Cs і ^{90}Sr для даного харчового продукту

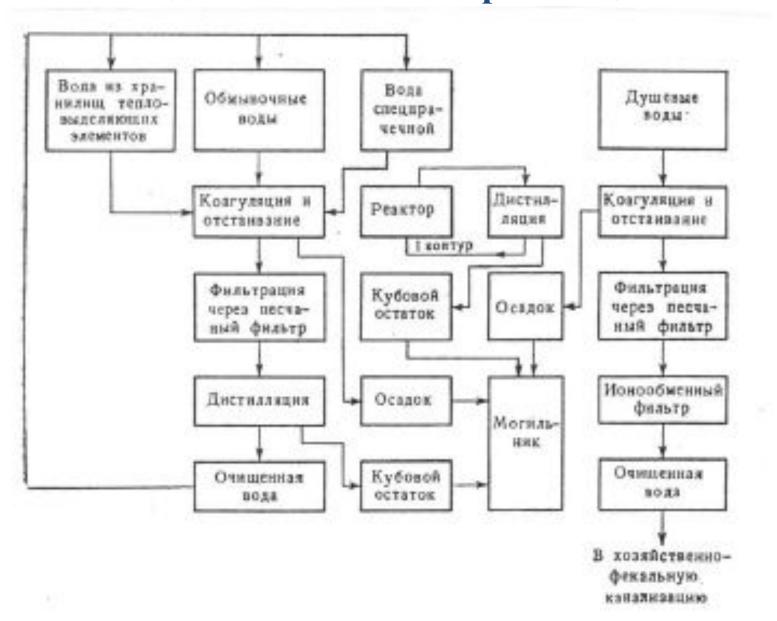

СЕРЕДНІ ЕФЕКТИВНІ ДОЗИ ОПРОМІНЮВАННЯ ПАЦІЄНТІВ ПРИ РЕНТГЕНІВСЬКИХ ПРОЦЕДУРАХ



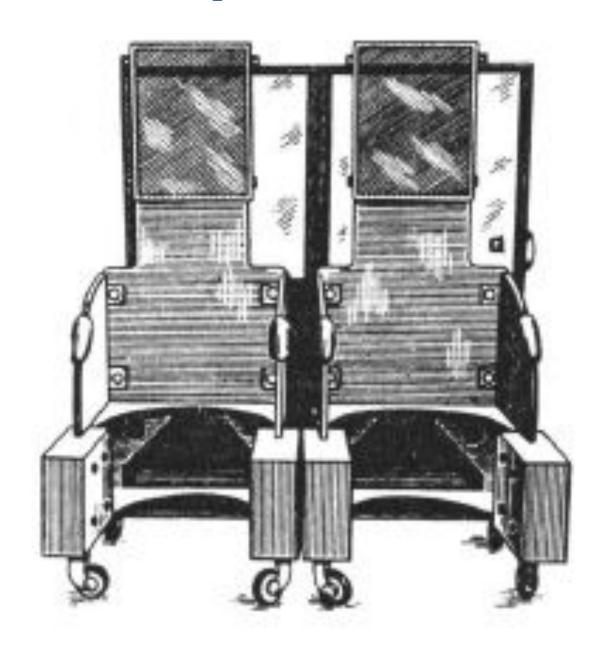
Гамма – терапевтический аппарат «Агат-В»

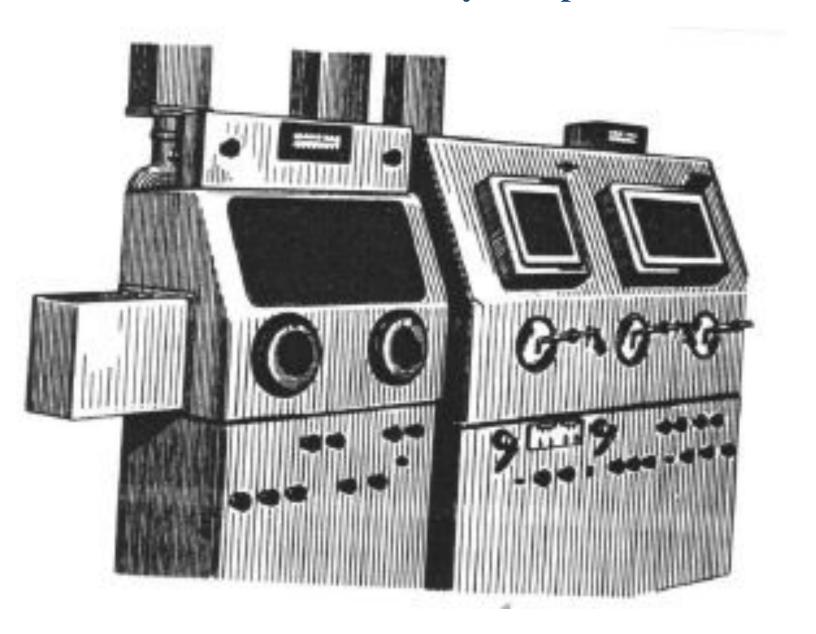


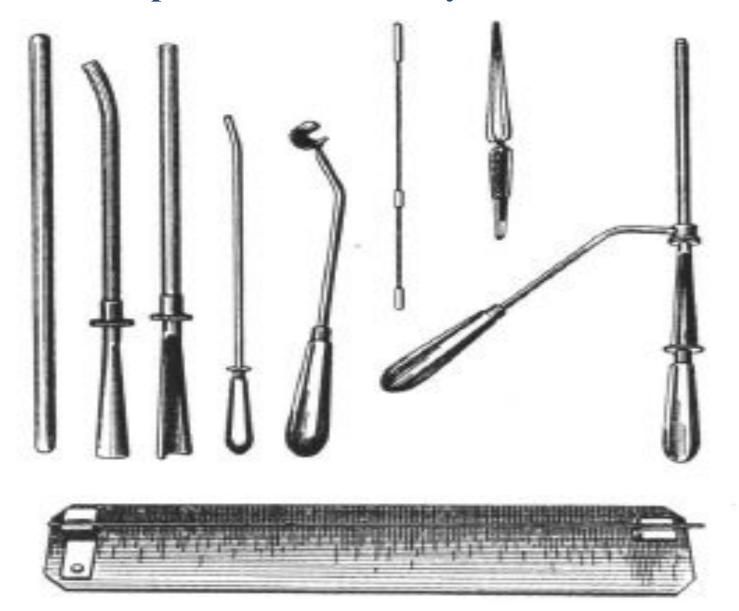

Миграция радиоактивных веществ из окружающей среды в организм человека (по А.Н.Марею)

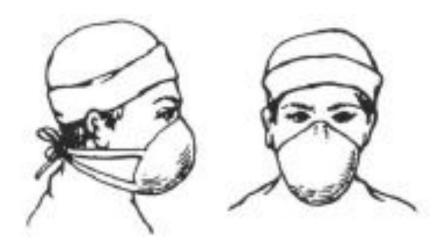

Основные источники облучения населения и обусловленные ими эффективные эквивалентные дозы

Источники излучения	Доза, мкЗв/год
Природные	
космические лучи на поверхности земли	320
гамма-излучение	
фоновое	300
дополнительное (стройматериалы)	110
внутреннее облучение	
бета-излучатели	200
альфа-излучатели	160
дополнительное	
удобрения	0,3
сжигание угля	2
радон-222, радон-220	
фоновое	280
дополнительное	
стройматериалы	480
почва	1090
Медицинские	1230
рентгенодиагностика	1200
радионуклидная диагностика	30
Остальные искусственные источники	53,1
испытания ядерного оружия	20
ядерная энергетика	0,1
профессиональное облучение	3
последствия аварии на ЧАЭС (1990)	30
Reara	4200




Принципиальная схема переработки радиоактивных отходов атомной электростанции

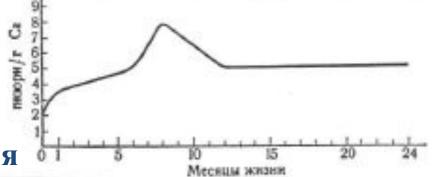
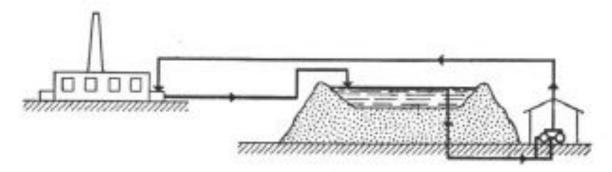

Передвижные экраны для защиты от излучения

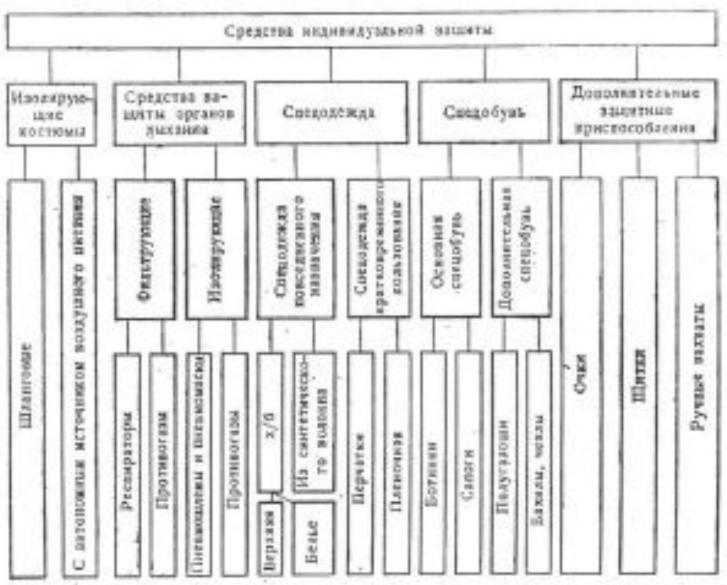

Бокс защитный универсальный

Набор инструментов для нанизывания радиоактивных бус на нити

Респиратор ШБ-1 («Лепесток»)

Динамика накопления Sr 90 у младенцев Москвы в зависимости от возраста – средние значения


Схема оборотного водоснабжения

Механический комплекс защитного технологического оборудования

Классификация средств индивидуальной защиты, применяемых при работе с радиоактивными веществами (по С.М.Городинскому)

По радиотоксичности РВ делятся на 5 групп:

Группа A — элементы с особо высокой радиотоксичност $(P_{\mu}^{239}, P_{0}^{210}, R_{a}^{226})$ и др.)

Группа Б – элементы с высокой радиотоксичностью. (\mathbf{R}_{a}^{223} , \mathbf{Sr}^{90} , \mathbf{I}^{131} и др.)

Группа В - элементы со средней радиотоксичностью. (Cs¹³⁷,Ir ¹⁹², Sr⁸⁹ P³² и др.)

Группа Γ - элементы с малой радиотоксичностью (\mathbb{C}^{14} , $\mathbb{B}e^7$)

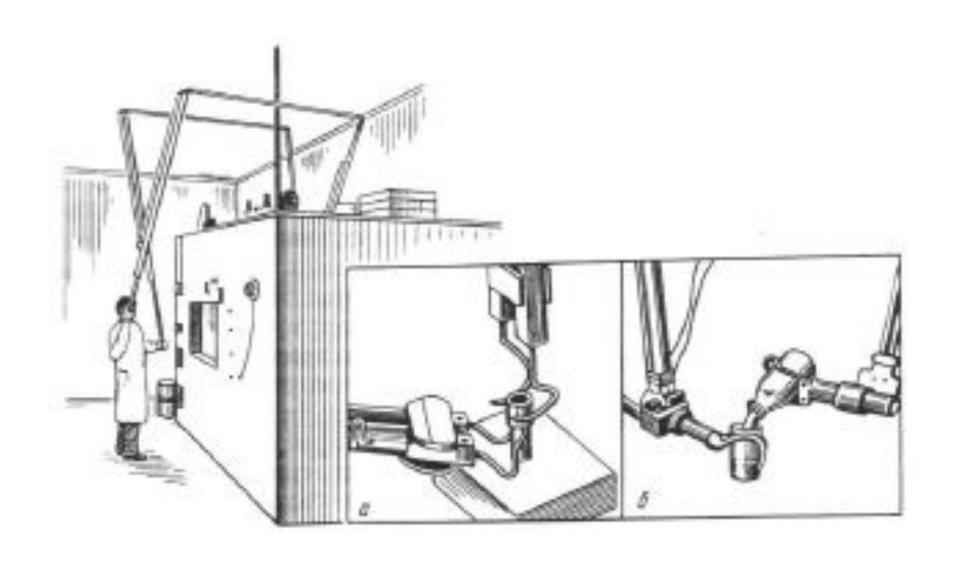
Группа Д - элементы с наименьшей радиотоксичностью (\mathbf{H}^3) .

При планировке помещений соблюдается принцип зональности.

Критический орган — это орган или ткань, часть тела или всё тело, облучение которых в данных условиях наиболее существенно в отношении возможного ущерба здоровью (с учетом радиочувствительности отдельных органов и распределения отдельных органов и распределения эквивалентной дозы по телу).

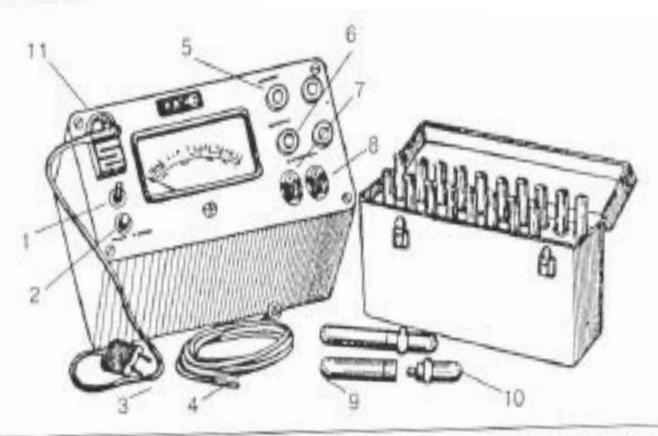
В зависимости от радиочувствительности и степени опасности выделены три группы критических органов:

- *1 группа* всё тело, гонады, красный костный мозг;
- 2 группа мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, лёгкие, хрусталик глаза и др. органы, за исключением тех, которые относятся к 1 и 3.
- *3 группа* костная ткань, кожный покров, кисти, предплечья, лодыжки и стопы.


Радиотоксичность изотопов зависит от ряда моментов, главными из которых являются следующие:

- 1. вид радиоактивного превращения;
- 2. средняя энергия одного акта распада;
- 3. схема радиоактивного распада;
- 4. пути поступления радиоактивного вещества в организм;
- 5. распределение радиоактивных веществ по органам и системам;
- 6. время пребывания излучателя в организме;
- 7. продолжительность времени поступления радиоактивного вещества в тело человека.

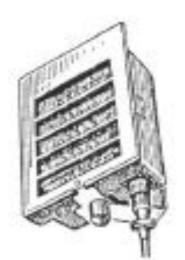
Помещения для работы I класса размещает в отдельном здании и изолированной части здания с отдельным входом только через санпропускник и разделяют на 3 зоны:


- 1 зона ("горячая") камеры, боксы и другие герметические устройства, необслуживаемые помещения, где размещаются технологическое оборудование и коммуникации, являющиеся основными источниками радиоактивного загрязнения.
- 2 зона периодически обслуживаемые ремонтно-транспортные помещения, служат для вскрытия и ремонта оборудования, загрузки и разгрузки РВ.
- 3 зона чистая, помещения постоянного прерывания персонала, 2 и 3 зоны связаны между собой санитарным шлюзом с пунктом дозиметрического контроля.

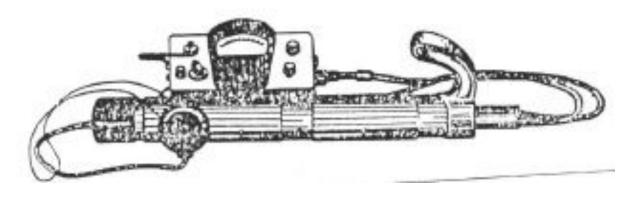
Действие механических рук (манипуляторов)

а – разъединение деталей, б – переливание жидкости

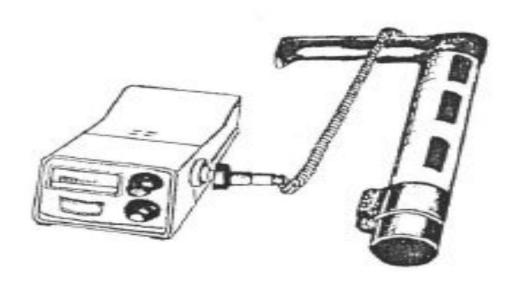
Индивидуальный дозиметр «КИД-2»

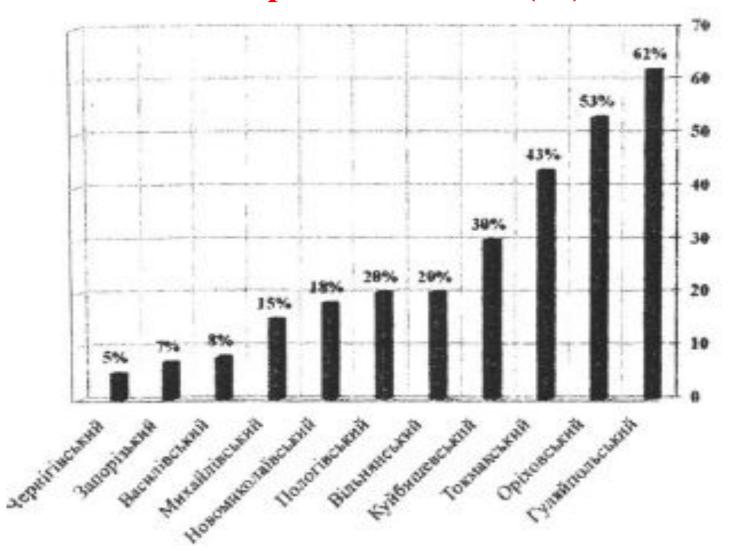

Индивилуальный дозиметр "КИД»2": 1— тумблер; 2 — румка "уст. цжалы"; 3 — шиур сетевой; 4 — шиур батарейный; 5 — гисэдо "измерения"; 6 — гисэдо "заряд"; 7 — "чумствительность 0,05 Р" (R_s); 8 — чувствительность 1Р (R_s); 9 — дозиметр 0,05 Р; 10 — дозиметр 1Р; 11 — предохранитель

Фотодозиметр ИФК-2,3

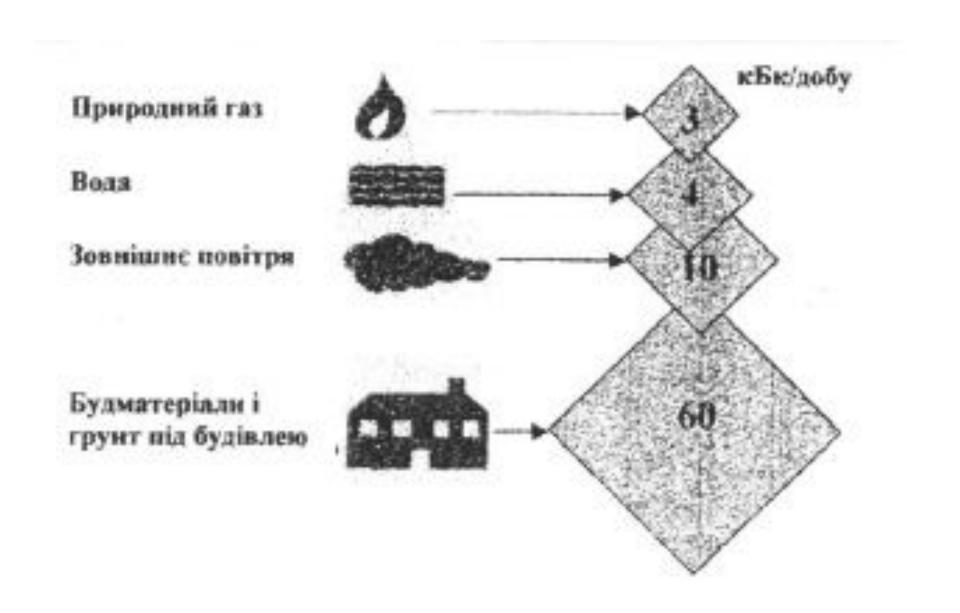


Сигнализатор загрязнения бета-излучаемыми радионуклидами СЗБ-03




Сцинтилляционный радиометр переносной (СРП-68-01)

Сцинтилляционный радиометр (СРП-88 Н)


Перевищення нормативу вмісту радону-222 в повітрі для існуючих житлових приміщень Запорізької області (%)

ЕФЕКТИВНІ ДОЗИ ОПРОМІНЕННЯ НАСЕЛЕННЯ ЗАПОРІЗЬКОЇ ОБЛАСТІ, ОБУМОВЛЕННІ РАДІОАКТИВНІСТЮ БУДІВЕЛЬНИХ МАТЕРІАЛІВ (мк3в·рік-1)

Матеріали стін будинків	Потужність дози опромінення (мкР/год)	Ефективна доза опромі-нення (мкЗв)
Цегла	15,9-17,0	647
Панелі залізобетонні	19,0-21,0	905
Шлак	19,0-20,0	877
Саман	6,5-10,0	283

Джерела і швидкість надходження радону в будинок

Спасибо за внимание

