МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Факультет физико-технический

Кафедра оптоэлектроники

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

ИССЛЕДОВАНИЕ ВЛИЯНИЙ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ ПРИ ПРОКЛАДКЕ ОПТИЧЕСКИХ КАБЕЛЕЙ НА ПАРАМЕТРЫ ОПТИЧЕСКОГО ВОЛОКНА

Работу выполнила Орленко Олеся Михайловна

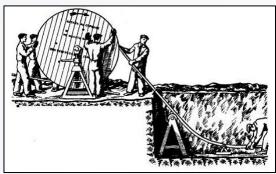
Kypc 4

Направление подготовки 11.03.02 Инфокоммуникационные технологии и системы связи

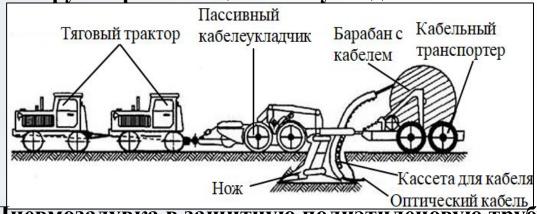
Научный руководитель канд. техн. наук, доцент Ю. Н. Белов

АКТУАЛЬНОСТЬ, ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Широкое применение ВОСП обусловило повышенный интерес к сроку службы и надежности оптического волокна. Оптические кабели должны быть выполнены так, чтобы выдерживать механические нагрузки, возникающие при их прокладке. Поэтому при прокладке оптических кабелей важным является контроль прикладываемых к ним механических нагрузок.

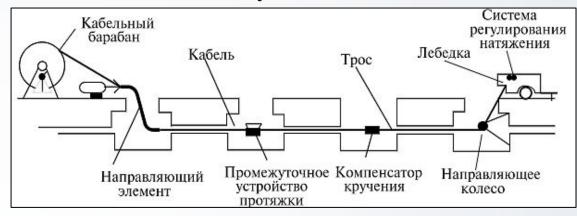

Целью выпускной квалификационной работы является исследование влияния механических воздействий на параметры оптического волокна.

Для ее достижения необходимо рассмотреть ряд вопросов:

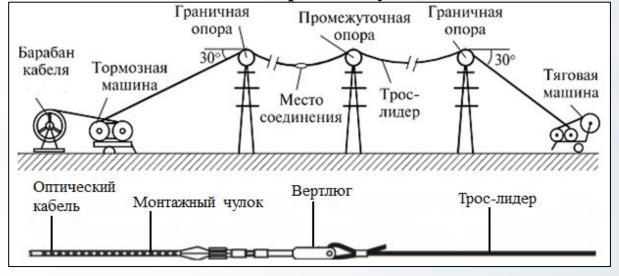

- 1) Анализ появления механических воздействий при строительстве волоконно-оптических линий связи;
- 2) Расчет растягивающих усилий оптических кабелей при прокладке в грунт, в кабельной канализации и подвеске на опорах воздушной линии;
- 3) Расчет изменения оптических параметров в зависимости от величины растягивающих усилий;
- 4) Разработка рекомендаций по уменьшению влияния различных способов прокладки оптических кабелей на оптические характеристики оптического волокна.

ТЕХНОЛОГИИ ПРОКЛАДКИ ОПТИЧЕСКИХ КАБЕЛЕЙ

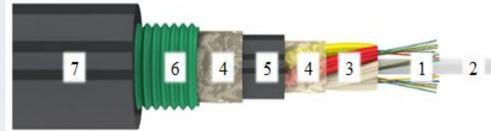
В грунт в открытую траншею

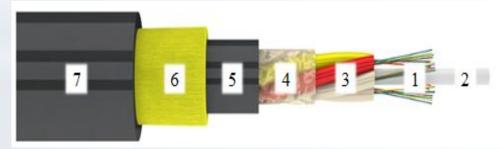


В грунт при помощи кабелеукладчика



В кабельную канализацию


Подвеска на опорах воздушной линии


КОНСТРУКЦИИ ОПТИЧЕСКИХ КАБЕЛЕЙ ПРОИЗВОДСТВА ЗАВОДА «ИНКАБ»

В грунт марки ДПС-П-16У(4×4)-7кН

В кабельную канализацию марки ДПЛ-П-48У(6×8)-2,7кН

Для подвески марки ДПТ-П-16У(4×4)-6кН

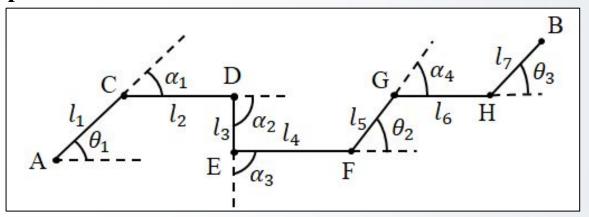
1 – Оптическое волокно	5 — Промежуточная оболочка
2 — Центральный силовой элемент	6 — Броневой покров
3 – Оптический модуль	7 – Внешняя оболочка
4 — Гидрофобный заполнитель	

Технические характеристики ОК

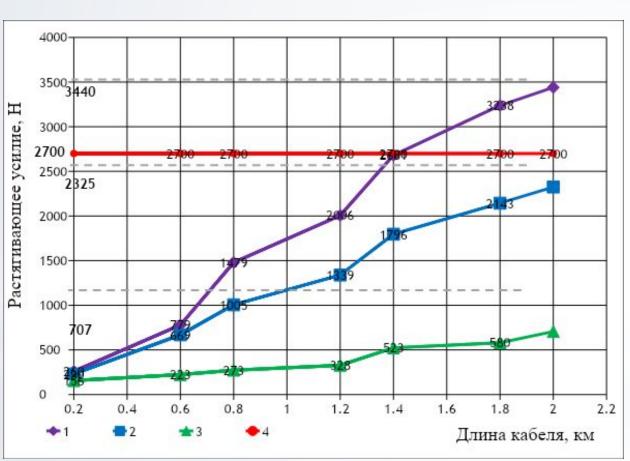
Параметр	ДПС-П-16У (4×4)-7кН	ДПЛ- П-48У (6×8)-2,7 кН	ДПТ- П-16У (4×4)-6кН		
Количество ОВ	16	48	16		
Диаметр кабеля, мм	11,2	12,4	12,5		
Масса кабеля, кг/км	204,8	157,9	115,0		
Допустимое растягивающее усилие, кН	7,0	2,7	6,0		
Раздавливающая нагрузка, кН/см	0,4	0,3	0,3		
Минимальный радиус изгиба	не менее 15 диаметров кабеля				
Рабочая температура, °С	-60+70				
Срок гарантийной эксплуатации, год	не менее 2				

РАСЧЕТ РАСТЯГИВАЮЩИХ УСИЛИЙ ПРИ ПРОКЛАДКЕ ОК В ГРУНТ КАБЕЛЕУКЛАДЧИКОМ

Динамические: Статические:


Раздавливающее усилие:

РАСЧЕТ РАСТЯГИВАЮЩИХ УСИЛИЙ ПРИ ПРОКЛАДКЕ ОК В СВОБОДНОМ КАНАЛЕ КАБЕЛЬНОЙ КАНАЛИЗАЦИИ


Распределение прикладываемого растягивающего усилия по участкам

-				·		•	
Участок			Накло учас		Пов	орот	
A-C	0,2	-	0,44	224	-	-	224
C		-	-	-	0,44	260	260
C-D	0,4	204	-	-	-	-	464
D		-	-	-	1,57	779	779
D-E	0,2	102	-	-	-	-	881
E		-	-	-	1,57	1479	1479
E-F	0,4	204	-	-	-	-	1683
F		-	-	-	0,53	2006	2006
F-G	0,2	-	0,53	245	-	-	2251
G		-	-	-	0,53	2681	2681
G-H	0,4	204	-	-	-	-	2885
H		-	-	-	0,35	3238	3238
H-B	0,2	-	0,35	202	-	-	3440

Трасса асбестоцементной кабельной канализации

ЗАВИСИМОСТЬ РАСТЯГИВАЮЩЕГО УСИЛИЯ ОТ ДЛИНЫ ОК ПРИ ПРОКЛАДКЕ В АСБОЦЕМЕНТНОЙ КАБЕЛЬНОЙ КАНАЛИЗАЦИИ

- 1 без смазки канала, $f_{\rm T} = 0.33$;
- 2 со смазкой канала, $f_{\rm T} = 0.26$;
- $3 3\Pi T$ с твердой смазкой, $f_T = 0.07$;
- 4 допустимое растягивающее усилие, 2700 Н.

Использование смазочного материала позволяет снизить нагрузку на 32%, а прокладка кабеля в ЗПТ достигает уменьшение на 79%.

РАСЧЕТ РАСТЯГИВАЮЩИХ УСИЛИЙ ПРИ ПРОКЛАДКЕ ОК В ЗАНЯТОМ КАНАЛЕ КАБЕЛЬНОЙ КАНАЛИЗАЦИИ

$$F_3 = P \cdot l_{\text{crp}} \cdot f_T \cdot g \cdot f_3 \le [F], H$$

P — масса единицы длины кабеля, 157,9 $\frac{\text{кг}}{\text{км}}$;

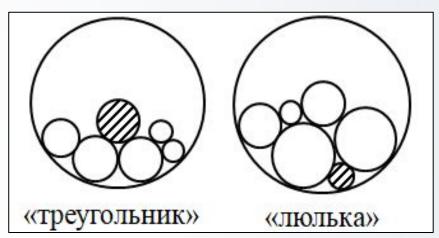
 $l_{\rm crp}$ — строительная длина кабеля, 2 км;

 $f_{\rm T}$ – коэффициент трения, 0,33;

g – ускорение свободного падения, 9,81 $\frac{M}{c^2}$;

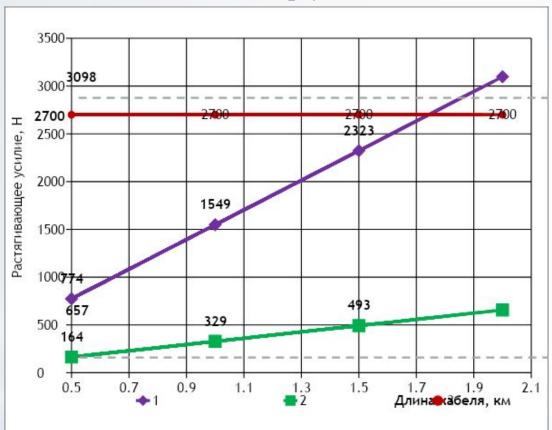
 f_3 – коэффициент заклинивания:

$$f_{3\Delta} = \frac{1}{\sqrt{1 - \left(\frac{d}{D-d}\right)^2}}$$
 - «треугольник» $f_{3\nabla} = 1 + \frac{4}{3} \cdot \left(\frac{d}{D-d}\right)^2$ - «люлька»

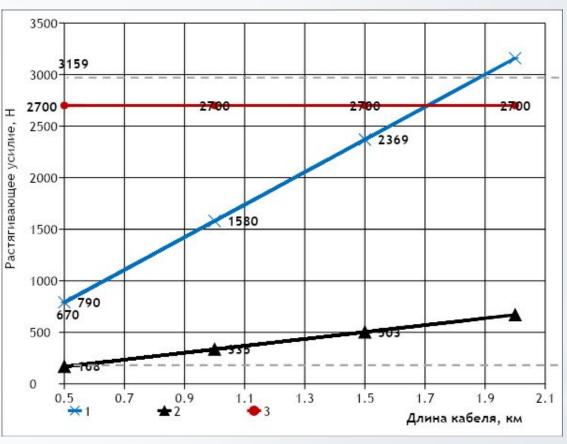

d – наружный диаметр оптического кабеля, 12,4 мм;

D – внутренний диаметр канала трубопровода, 100 мм.

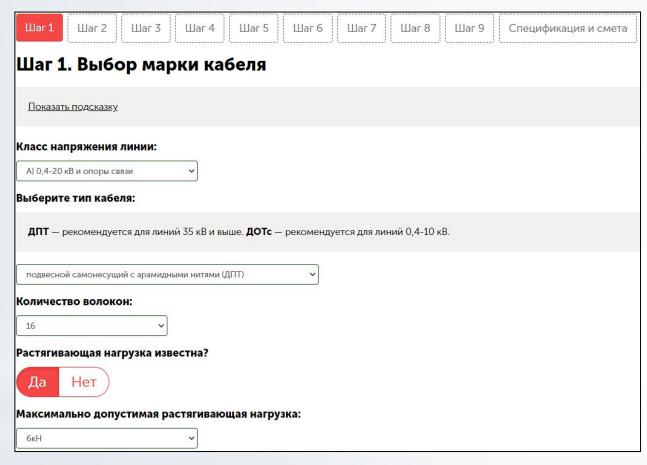
При прокладке кабеля марки ДПЛ-П-48У(6×8)-2,7кН получены значения:

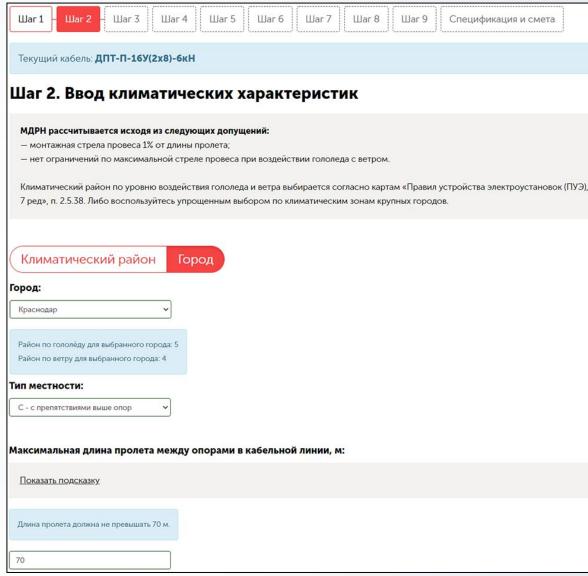

- При расположении «треугольник» **3098** H > **2700** H;
- При расположении «люлька» **3159** H > **2700** H.

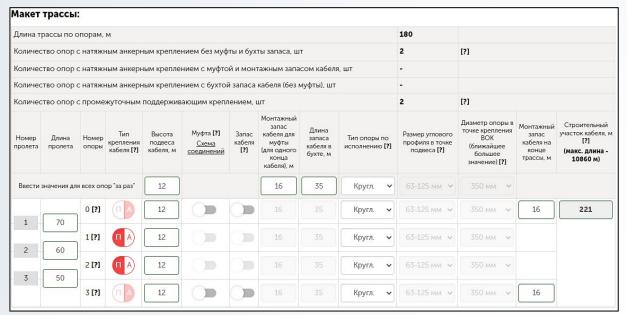
Расположение ОК в занятом канале

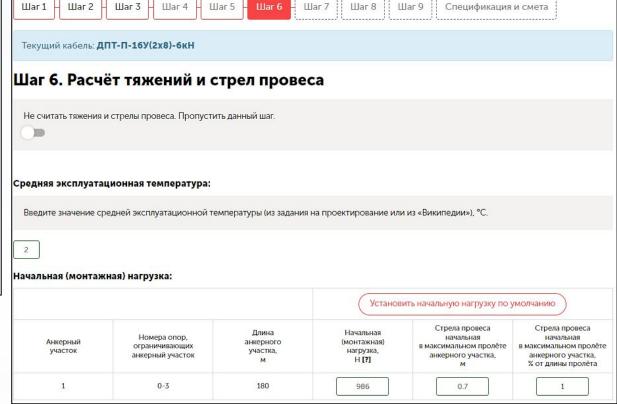

ЗАВИСИМОСТЬ РАСТЯГИВАЮЩЕГО УСИЛИЯ ОТ ДЛИНЫ ОК

Расположение «треугольник»

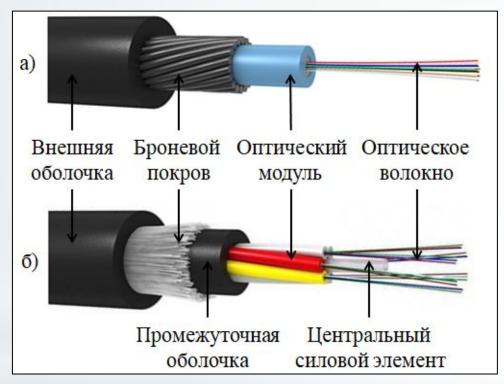

- 1 без смазки канала, $f_{\rm T} = 0.33$;
- $2 3\Pi T$ с твердой смазкой, $f_{_{\rm T}} = 0.07$;
- 3 допустимое растягивающее усилие


Расположение «люлька»


Прокладка кабеля в ЗПТ позволяет снизить нагрузку на 79% при расположении кабелей «треугольник» и «люлька».


РАСЧЕТ РАСТЯГИВАЮЩЕГО УСИЛИЯ ПРИ ПОДВЕСКЕ ОК

РАСЧЕТ РАСТЯГИВАЮЩЕГО УСИЛИЯ ПРИ ПОДВЕСКЕ ОК


РЕЗУЛЬТАТЫ РАСЧЕТА РАСТЯГИВАЮЩЕГО УСИЛИЯ ПРИ ПОДВЕСКЕ ОК

Номера опор	0-1	1-2	2-3
Длина пролета, м	70	60	50
Максимальная растягивающая нагрузка (гололед + ветер), H	5504	5011	4494
Стрела провеса максимальная (гололед + ветер), м	3,98	3,21	2,49
Стрела провеса горизонтальная максимальная (ветер), м	2,15	1,72	1,31
Стрела провеса вертикальная максимальная (гололед), м	3,95	3,19	2,48

Допустимое растягивающее усилие 6000 Н.

При подвеске кабеля марки ДПТ-П-16У(6×8)-6кН получено значение: **5504** Н < **6000** Н

РАСЧЕТ ИЗМЕНЕНИЯ ОПТИЧЕСКИХ ПАРАМЕТРОВ ОК В ЗАВИСИМОСТИ ОТ ВЕЛИЧИНЫ РАСТЯГИВАЮЩИХ УСИЛИЙ

Конструкции ОК производства завода «Еврокабель-1»: а) ОГЦ-8А-7; б) ОСД-4×4А-10

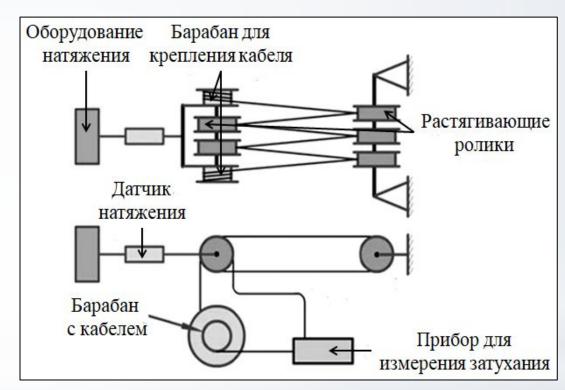
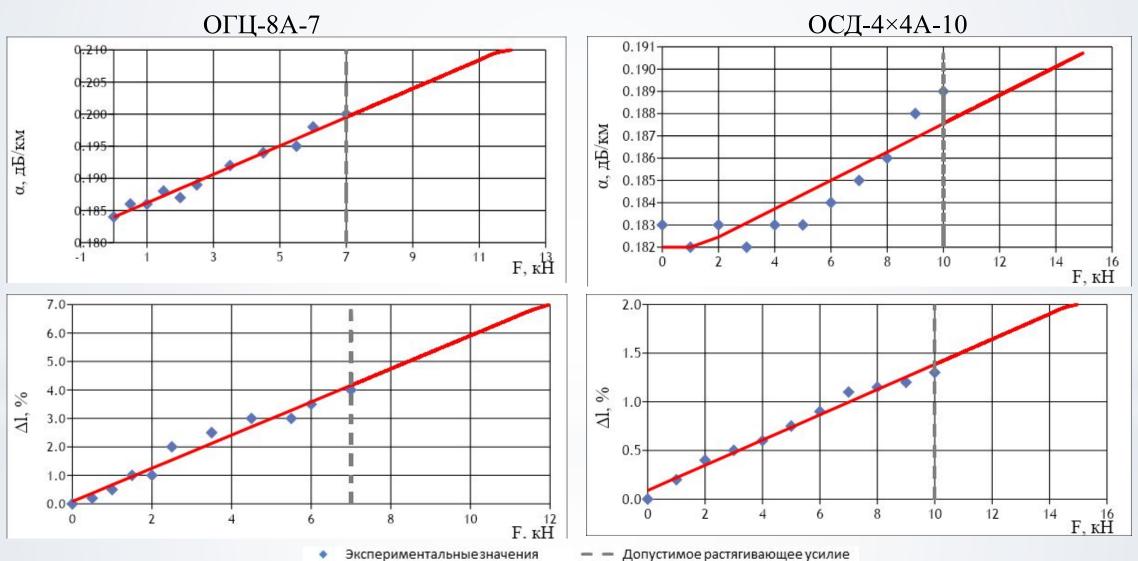



Схема установки при испытании ОК на стойкость к растягивающему усилию

ЗАВИСИМОСТЬ КОЭФФИЦИЕНТА ЗАТУХАНИЯ ОВ И УДЛИНЕНИЯ ОК ОТ РАСТЯГИВАЮЩЕЙ НАГРУЗКИ

Аппроксимация

РЕКОМЕНДАЦИИ ПО УМЕНЬШЕНИЮ ВЛИЯНИЯ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ ПРИ ПРОКЛАДКЕ ОК

При прокладке ОК в грунт:

При прокладке ОК в кабельную канализацию:

При подвеске ОК на опорах воздушной линии связи:

- Предварительная пропорка грунта;
- Прокладка кабеля в защитной полиэтиленовой трубе методом задувки;
- Выбор другой конструкции ОК.
- Уменьшение коэффициента трения между оболочкой ОК и каналом трубопровода;
- Разделение растягивающего усилия;
- Выбор другой конструкции ОК.
- Правильный расчет механических нагрузок с заранее определенными условиями;
- Уменьшение расстояния между опорами;
- Выбор другой конструкции ОК.

ЗАКЛЮЧЕНИЕ

- 1) Дан анализ появления механических воздействий во время строительства ВОЛС.
- 2) Исследовано влияние конструктивных элементов на прочностные характеристики ОК и даны рекомендации по выбору кабелей для строительства ВОЛС.
- 3) Произведены расчеты растягивающего усилия, испытываемого ОК, которые составили:
- При прокладке в грунт кабелеукладчиком кабеля марки ДПС-П-16У(4×4)-7кН динамическое и статическое растягивающее усилие составило 2735 Н и 2459 Н соответственно. Раздавливающее усилие 2503 $\frac{H}{CM}$, даны рекомендации по снижению данной нагрузки.
- При прокладке в кабельной канализации кабеля марки ДПЛ-П-48У(6×8)-2,7кН в свободном канале значение нагрузки составило 3440 H, а занятом другими кабелями при расположении прокладываемых ОК «треугольник» 3098 H и «люлька» 3159 H.
- При подвесе на опорах воздушной линии связи растягивающее усилие кабеля марки ДПТ-П-16У(4×4)-6кН составило 5504 Н.

При применении рекомендованных мероприятий нагрузка на оптические кабели в свободном канале кабельной канализации может снижаться на 32% и 79%, в занятом канале на 79% при расположении кабелей «треугольник» и «люлька».

4) Произведенные расчеты изменения оптических параметров ОК марок ОГЦ-16А-7 и ОСД-4×4А-10 показали, что рассмотренные механические воздействия на оптические кабели не вызывают значительного увеличения рабочего затухания волокна, а также не увеличивают длину волокна поскольку в конструкции волокно укладывает в свободно скрученном виде.

Предлагаемые методы уменьшения влияния механических воздействий служат рекомендацией для организаций, занимающихся проектированием и строительством ВОЛС с целью выбора оптимальных конструкций оптических кабелей.