

#### Особенности

- Циклические и линейные фосфазеновые структуры обладают необычайной устойчивостью.
- Связи PN в фосфазенах короче чисто ковалентных σ-связей P—N. Наименьшие длины связей наблюдаются в присутствии наиболее электроотрицательных заместителей.
- Длины связей PN кольца обычно одинаковы, за исключением тех случаев, когда заместители расположены несимметрично.

$$R$$
 $R$ 
 $P$ 
 $N$ 
 $R$ 

ì î í î ô î ñô àçåí

$$\begin{array}{c|c}
R & P & R \\
\vdots & N & \vdots \\
R & & P & R \\
R & & P & R
\end{array}$$

Öèêëî òðèôî ñô àçåí

$$\begin{array}{c} R & R \\ + P & N \end{array}$$

Ïîëèôîñôàçåí

#### Особенности

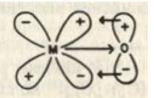
- Валентные углы при атомах фосфора в кольце цикло- и поли¬фосфазенов составляют приблизительно 120°, а углы при атомах азота колеблются от 120 до 148,6°.Связи РN в фосфазенах короче чисто ковалентных σ-связей Р—N. Наименьшие длины связей наблюдаются в присутствии наиболее электроотрицательных заместителей.
- Некоторые циклические фосфазены имеют плоскую структуру, Другие изогнутую, однако наличие или отсутствие плоской структуры по-видимому, мало влияет на устойчивость молекулы.
- Атомы азота в циклофосфазенах ведут себя как нуклеофильные центры, особенно если при атомах фосфора имеются электронодонорные заместители.
- В случае цикло- и полифосфазенов не наблюдаются спектральные эффекты, свойственные π-электронным системам, например, батохромные сдвиги полос поглощения в УФ-спектрах, вызванные увеличением степени делокализации π-электронов
- В отличие от органических ароматических систем фосфазеновый цикл с

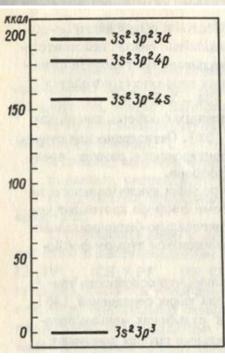
#### **Характеристики связи с участием атома** фосфора

- Аргументы в пользу участия 3d-орбиталей атомов фосфора в образовании связей:
  - Существование устойчивых соединений пяти и шестикоорди национного фосфора;
  - Механизм реакций;
  - Р "Обратная"связь;
  - Расчеты методом молекулярных орбиталей.
- Аргументы против участия 3d-орбиталей атома фосфора в образовании связей.

Существование устойчивых соединений пяти и шестикоординационного фосфора

#### Вещества


СН<sub>3</sub>РF<sub>4</sub> (СН<sub>3</sub>)<sub>2</sub>PF<sub>3</sub> PF<sub>3</sub>Cl<sub>2</sub> (СН<sub>3</sub>)<sub>2</sub>PF<sub>3</sub>Cl<sub>2</sub> Устойчивые , молекулы которых имеют структуру тригональной бипирамиды


#### Механизм реакций

Полагают, что реакции нуклеофильного замещения при четырехкоординационном атоме фосфора протекают через образование пятикоординацонного тригональнобипирамидального переходного состояния с sp<sup>3</sup>d – гибридизированным атомом фосфора

#### " Обратная" связь

Р и с. 2.1. Образование "обратной" связи за счет  $d_{\pi}$  –  $p_{\pi}$ -взаимодействия.





Р и с. 2.2. Диаграмма энергетических уровней атома фосфора, полученная из спектральных данных и показывающая относительный порядок расположения и подразделение 3p-, 4s-, 4p- и 3d- орбиталей [47a].

#### Предполагаемые структурные модели фосфазенов

- Цвиттерионная модель электронной структуры фосфазенов;
- Модель, основанная на использовании 4s- или 4p-орбиталей атомов фосфора;
- d<sub>"</sub>- р<sub>"</sub>-Модель:
  - Общие свойства модели

# Связи зенах

## **Цвиттерионная модель электронной структуры фосфазенов**

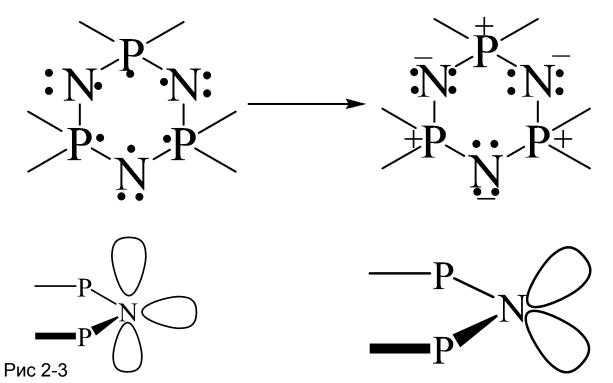
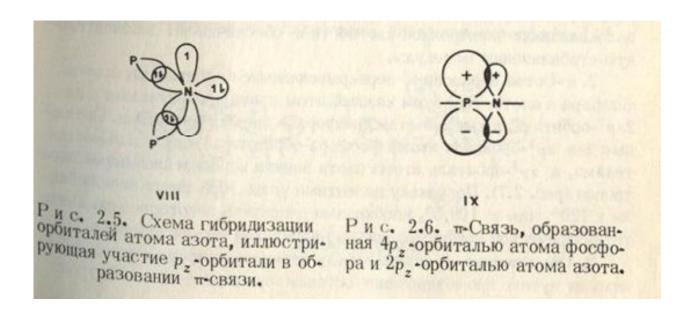




Рис 2-

## Модель, основанная на использовании 4s- или 4p-орбиталей атомов фосфора

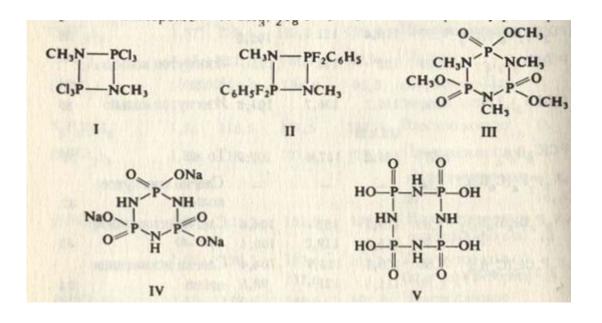


# Т Связи В фосфа

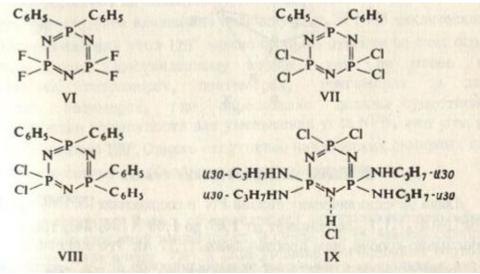
#### d<sub>п</sub>- р<sub>п</sub>-Модель

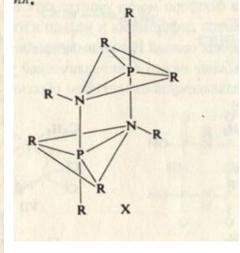


Рис. 2.10. п - Связи.

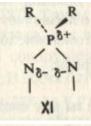

Р и с. 2.16. Схемы перекрывания d -орбитали (a) и d -орбитали (b) атома фосфора с p -орбиталями атомов азота при  $\pi$ -связывании, перекрывания d -орбитали (s) и d -орбитали (i) атома фосфора с sp -гибридными орбиталями атомов азота при  $\pi$  -связывании и перекрывания d -орбитали атома фосфора (a) с p-орбиталью заместителя при  $\pi$ -связывании [16].

#### Рентгеноструктурные данные


- Уменьшение длины связи фосфор азот;
- Равноценность связей в кольце;
- Длина экзоциклических связей;
- Валентные углы при атоме фосфора;
- Валентные углы у атома азота;
- Конформация молекул.


#### Уменьшение длины связи фосфор – азот






#### Равноценность связей в кольце





#### Валентные углы при атоме фосфора



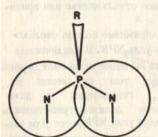
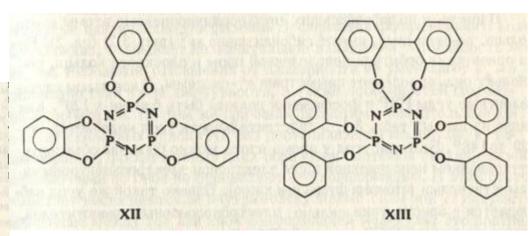
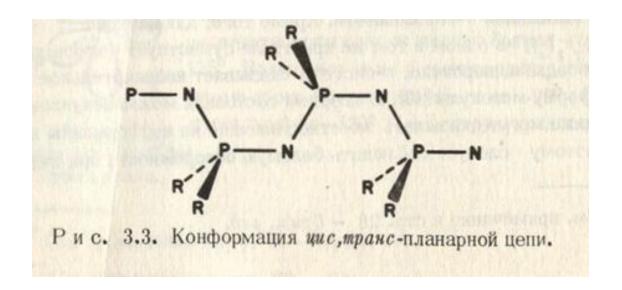





Рис. 3.1. Вандерваальсовой пограничное взаимодействие атомов азота в фосфазеновом кольце. Для азота [39] вандерваальсов радиус равен 1,55 Å; длина связи РN составляет 1,56 Å.



#### Конформация молекул





# Спасибо за внимание!