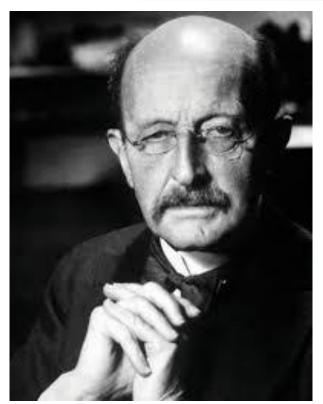


«Закон преломления света»

ЭЛЕКТРОМАГНИТНАЯ ПРИРОДА СВЕТА



Вторая половина XIX века:

Свет – частное проявление электромагнитных волн

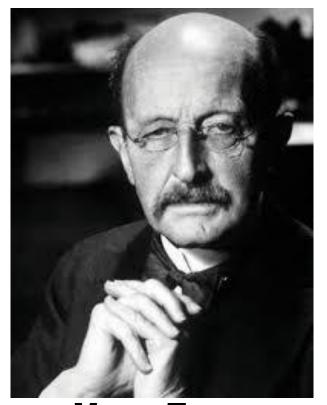
Джеймс Кларк Ма́ксвелл 13.06.1831 — 5.11.1879

КОРПУСКУЛЯРНАЯ ПРИРОДА СВЕТА

Макс Планк 23.04.1858 — 4.10.1947

1900 г.

Атомы испускают электромагнитную энергию отдельными порциями (квантами).


Энергия одного кванта пропорциональна частоте излучения. E=h
u

h – постоянная Планка

v – частота света

Е – энергия кванта

КОРПУСКУЛЯРНАЯ ПРИРОДА СВЕТА

Макс Планк 23.04.1858 — 4.10.1947

В настоящее время квант электромагнитного излучения называют фотоном.

Фотон – элементарная частица, являющаяся квантом электромагнитного поля.

$$E = h v$$

h – постоянная Планка

v – частота света

Е – энергия кванта

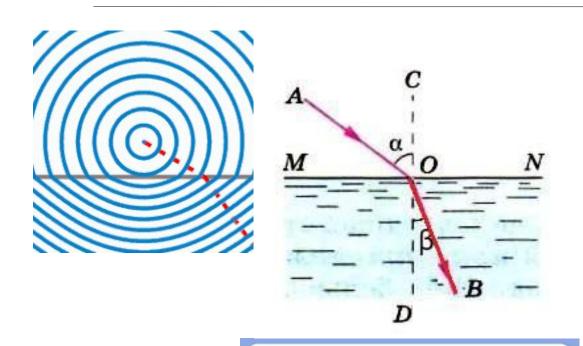
КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ СВЕТА

Свет ведёт себя как волна и как поток частиц. С увеличением частоты электромагнитного излучения в большей степени проявляются его корпускулярные свойства.

ЭЛЕКТРОМАГНИТНАЯ ПРИРОДА СВЕТА

Причина оптического эффекта – кажущегося излома трубочки в воде -

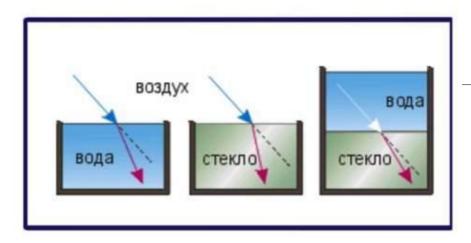
-Преломление света-


- Изменение направления светового луча при переходе из одной среды в другую.

ПРИЧИНА ПРЕЛОМЛЕНИЯ СВЕТА

Причина преломления света-изменение скорости света при переходе в другую среду

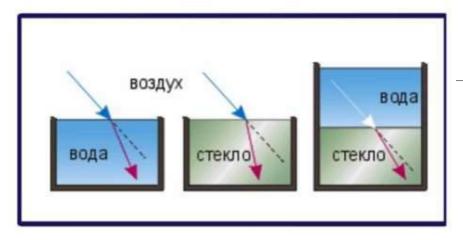
Скорость света в различных средах, км/с	
Вакуум	300000
Воздух	300000
Вода	225000
Кронглас (стекло)	198000
Флинтглас (стекло)	186000
Сероуглерод	184000
Алмаз	124000


ПРИЧИНА ПРЕЛОМЛЕНИЯ СВЕТА

α – угол паденияβ – угол преломления

Пьер Ферма 1662 г. Христиан Гюйгенс 1690 г.

Преломление света обусловлено изменением его скорости при переходе через границу двух сред.



Для характеристики среды, в которой распространяется свет, ввели физическую величину – абсолютный показатель

Скорость света в различных средах, км/с	
Вакуум	300000
Воздух	300000
Вода	225000
Кронглас	198000
(стекло) Флинтглас	186000
(стекло)	180000
Сероуглерод	184000
Алмаз	124000

преломления

АБСОЛЮТНЫЙ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

$$n = \frac{c}{9}$$

Абсолютный показатель преломления показывает, во сколько раз скорость света в среде меньше, чем

Скорость света в различных средах, км/с	
Вакуум 300000	
Воздух	300000
Вода	225000
Кронглас (стекло)	198000
Флинтглас (стекло)	186000
Сероуглерод	184000

Как зависит величина показателя преломления от скорости света в среде?

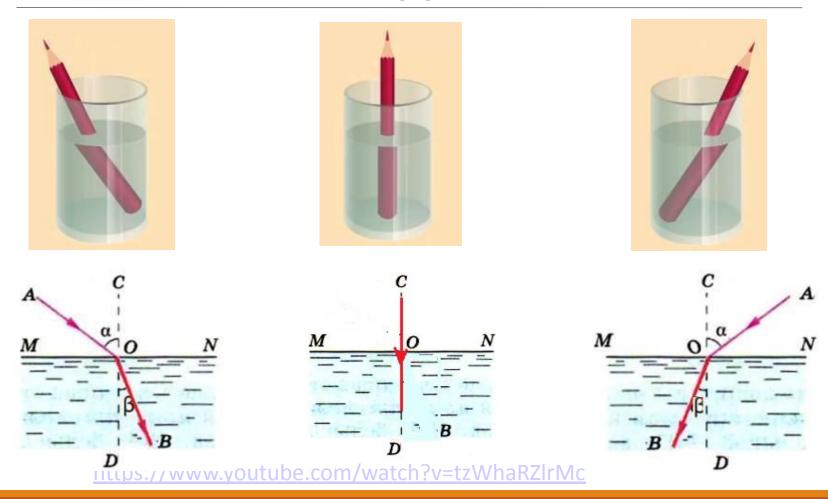
АБСОЛЮТНЫЙ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

Абсолютный показатель преломления показывает, во сколько раз скорость света в среде меньше, чем скорость света в вакууме

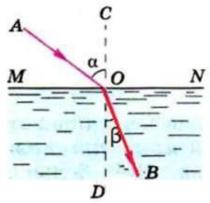
$$n = \frac{c}{\vartheta}$$

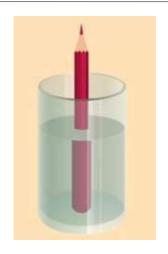
Скорость света в различных средах, км/с	
Вакуум	300000
Воздух	300000
Вода	225000
Кронглас (стекло)	198000
Флинтглас (стекло)	186000
Сероуглерод	184000

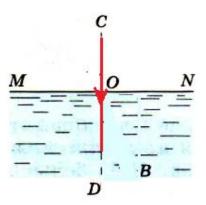
Чем меньше скорость света в среде, тем больше п.п. – тем оптически более плотная среда.

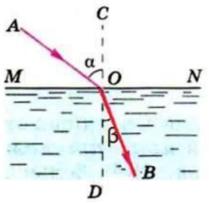

АБСОЛЮТНЫЙ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

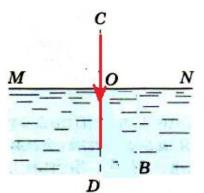
Чем больше показатель преломления, тем оптически более плотная среда (скорость света в ней меньше)


$$n = \frac{c}{9}$$

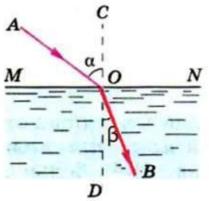

Скорость света в различных средах, км/с	
Вакуум 300000	
Воздух	300000
Вода	225000
Кронглас (стекло)	198000
Флинтглас (стекло)	186000
Сероуглерод	184000
Алмаз	124000

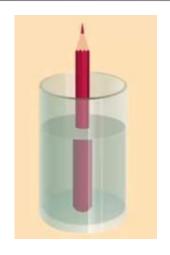

Предположите ход луча, при котором преломление не будет наблюдаться

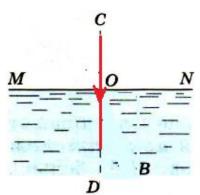




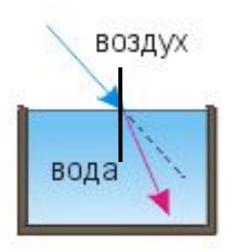
Лучи падающий, преломлённый и перпендикуляр, проведённый в точке падения луча к границе раздела двух сред, лежат в одной плоскости;






Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред

$$\frac{\sin \alpha}{\sin \beta} = n_{21}$$

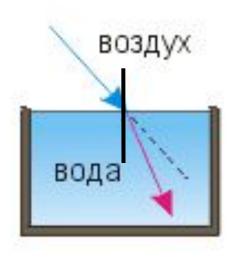


$$\frac{\sin \alpha}{\sin \beta} = n_{21}$$

Постоянная величина - относительный показатель преломления

КАК ПОКАЗАТЬ СВЯЗЬ ЗАКОНА ПРЕЛОМЛЕНИЯ СО СКОРОСТЬЮ СВЕТА В СРЕДЕ

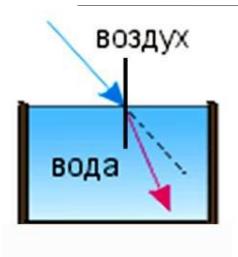
$$\frac{\sin \alpha}{\sin \beta} = n_{21}$$


$$n_1 = \frac{c}{9_1}$$

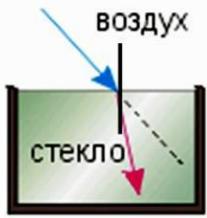
$$n_2 = \frac{c}{\vartheta_2}$$

Относительный показатель преломления показывает, во сколько раз п. п. второй среды отличается от п. п. первой

среды

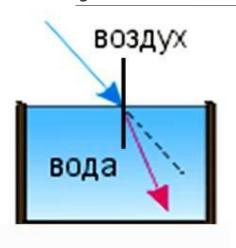

ОТНОСИТЕЛЬНЫЙ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

$$n_{21} = \frac{9_1}{9_2}$$


Относительный показатель преломления второй среды относительно первой называют физическую величину, равную отношению скоростей света в этих средах

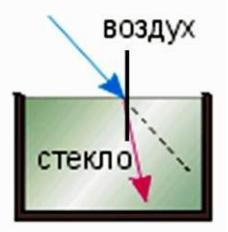
паидем связь между углом преломления и показателем преломления второй среды (оптической плотностью)

$$\frac{\sin \alpha}{\sin \beta} = n_{21}$$


Для этого сравним ход луча из воздуха в воду и стекло при одинаковом угле падения

$$\frac{\sin \alpha}{\sin \beta} = n_{21}$$

угла преломления в от показателы.


Сравним ход луча из воздуха в воду и стекло при одинаковом угле падения

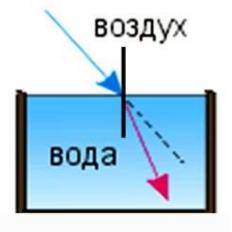
$$\frac{\sin\alpha}{\sin\beta} = n_{21}$$

Запишите закон преломления света для двух переходов.

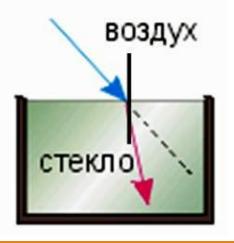
Подставьте значения абсолютных показателей преломления.

$$\frac{\sin \alpha}{\sin \beta} = n_{21}$$

Сравните полученные результаты.


Выразите зависимость угла преломления β от показателя преломления

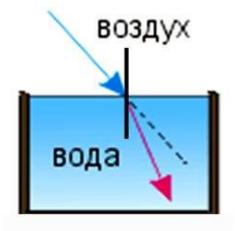
среды.


12. Показатель преломления

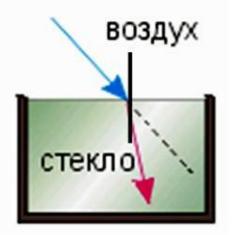
(средний для видимых лучей)

Алмаз	2,42	Сероуглерод 1,63
Вода	1,33	Спирт этиловый 1,36
Воздух	1,00029	Стекло 1,60

$$\frac{\sin \alpha}{\sin \beta} = n_{21} = \frac{n_2}{n_1}$$



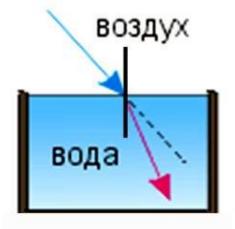
$$\frac{\sin\alpha}{\sin\beta} = n_{21} = \frac{n_2}{n_1} = \frac{n_2}{n_1}$$


Выразите зависимость угла преломления в от показателя преломления второй

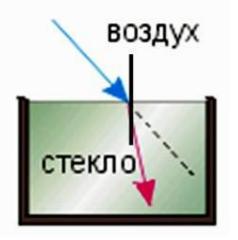
12. Показатель преломления (средний для видимых лучей)

Алмаз	Сероуглерод 1,63
Вода	
Воздух 1,00029	Стекло 1,60

$$\frac{\sin \alpha}{\sin \beta} = n_{21} = \frac{n_2}{n_1} = \frac{n_{eo\partial bi}}{n_{eos\partial yxa}} = \frac{1,33}{1}$$

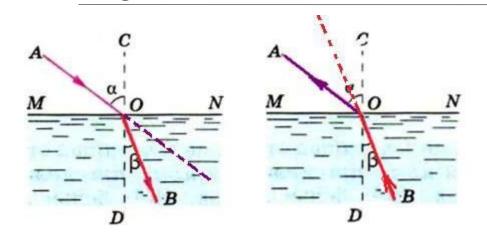


$$\frac{\sin \alpha}{\sin \beta} = n_{21} = \frac{n_2}{n_1} = \frac{n_{cmekna}}{n_{eo3\partial yxa}} = \frac{1,6}{1}$$


Чем больше показатель преломления второй среды, тем меньше угол

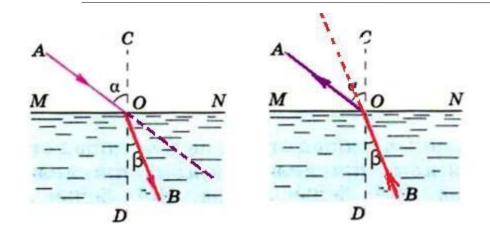
12. Показатель преломления (средний для видимых лучей)

Алмаз	2,42	Сероуглерод 1,63
Вода	1,33	Спирт этиловый 1,36
Воздух	1,00029	Стекло 1,60


$$\frac{\sin \alpha}{\sin \beta} = n_{21} = \frac{n_2}{n_1} = \frac{n_{eo\partial bi}}{n_{eo3\partial yxa}} = \frac{1,33}{1}$$

$$\frac{\sin \alpha}{\sin \beta} = n_{21} = \frac{n_2}{n_1} = \frac{n_{cmekna}}{n_{eo3\partial yxa}} = \frac{1,6}{1}$$

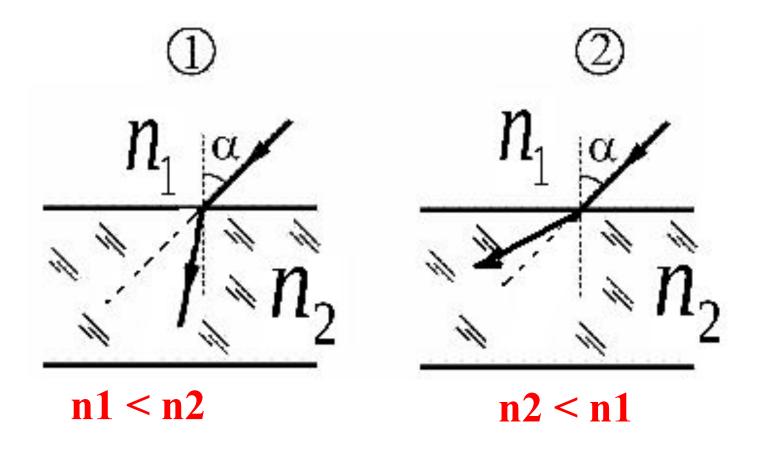
В оптически более плотной среде луч сильнее отклоняется к перпендикуляру


Свойство обратимости лучей

Проявляется в следующем:

Если переместить источник света из точки А в точку В, то луч пойдёт обратно по тому же пути

Свойство обратимости лучей



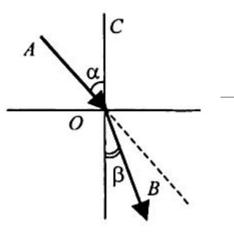
Проявляется в следующем:

Если переместить источник света из точки А в точку В, то луч пойдёт обратно по тому же пути

При переходе в оптически менее плотную среду луч отклоняется от перпендикуляра

Сравните показатели преломления сред.

домашнее задание:


§ 47, 48

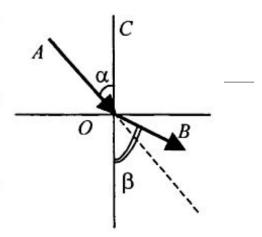
СР-51. Преломление света

ВАРИАНТ № 1

Луч света переходит из одной прозрачной среды в другую. Ход луча показан на рисунке.

- В какой среде (верхней или нижней) больше абсолютный показатель преломления?
- 2. В какой среде (верхней или нижней) свет распространяется с большей скоростью?
- Как изменяется длина волны света при переходе из верхней среды в нижнюю?

домашнее задание:


§ 47, 48

СР-51. Преломление света

ВАРИАНТ № 2

Луч света переходит из одной прозрачной среды в другую. Ход луча показан на рисунке.

- В какой среде (верхней или нижней) больше абсолютный показатель преломления?
- 2. В какой среде (верхней или нижней) свет распространяется с большей скоростью?
- 3. Как изменяется длина волны света при переходе из верхней среды в нижнюю?

