Лекция №2 **СЫРЬЕ В БИОТЕХНОЛОГИИ**

Вопросы:

- 1. Сырье для биосинтеза и оценка его биологической ценности;
- 2. Возобновляемое растительное сырье. Его характеристика и примеры возобновляемых биотехнологических производств;
- 3. Оптимизация питательных сред с биотехнологии. Методы оптимизации питательных сред;
- 4. Культивирование клеток и тканей растений, животных и человека.

Классификация питательных сред

Углеводные источники углеродного питания

- Глюкоза
- Сахароза
- Крахмал
- Гидрол (отход крахмально-паточного производства)
- Меласса (отход производства сахара)
- Кукурузная мука
- Пшеничные отруби (отход мукомольного производства)
- Молочная сыворотка
- Свекольный жом (отход сахарного производства)
- Гидролизаты древесины
- Сульфитные щелока (отход целлюлозно-бумажного производства)
- Гидролизаты торфа
- Отходы спиртового производства
- Картофельный сок

Неуглеводные источники углеродного питания

- Жидкие углеводороды
- Углеводородные газы
- Спирты
- Уксусная кислота
- Жиры и масла

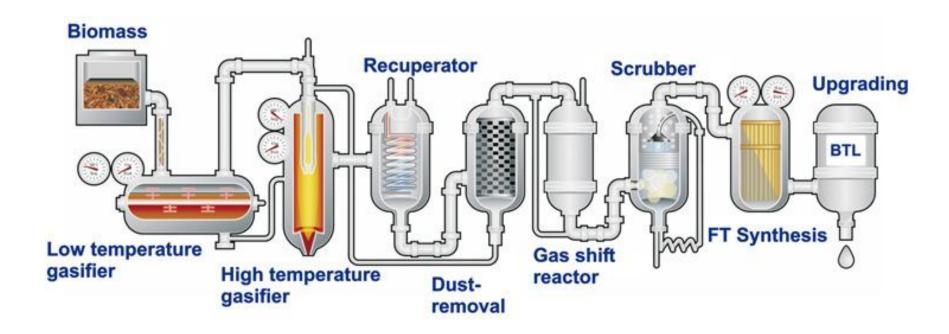
Экзотические источники углеродного питания

- Хитин
- Лигнин
- Агар
- Каменный уголь
- Сланец

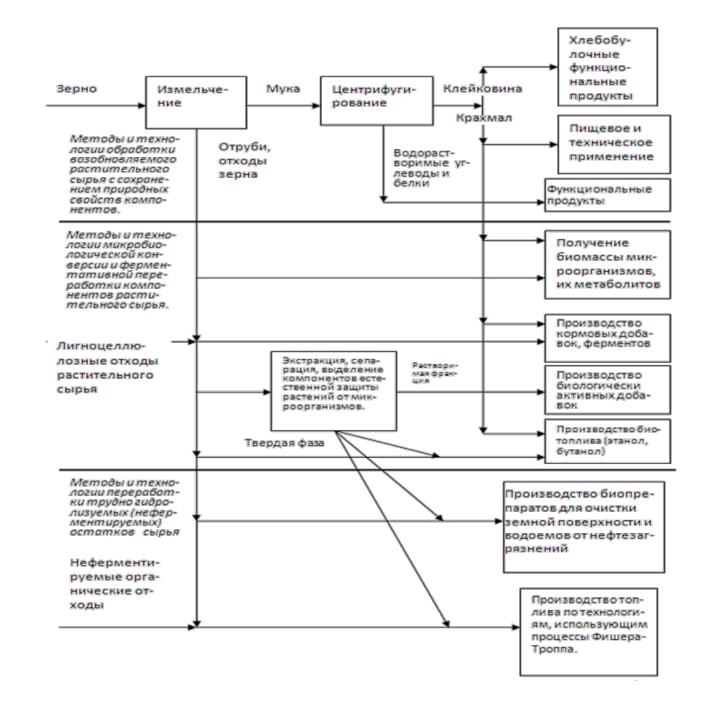
Источники азотного питания

- Кукурузный экстракт
- Соевая мука
- Мука семян хлопка
- Льняная мука
- Арахисовая мука
- Рыбная мука
- Кровяная мука
- Мясокостная мука
- Сухое обезжиренное молоко
- Продукты переработки животного сырья
- Дрожжевые автолизаты, гидролиза, ферментолизаты
- Мясной и рыбный пептоны

Макро- и микроэлементы


- Карбонат кальция
- Сульфат калия
- Хлорид калия
- Сульфат магния
- Сульфат марганца
- Сульфат железа
- Железный купорос
- Сульфат цинка
- Цинковый купорос
- Сульфат меди
- Медный купорос
- Сульфат кобальта

Возобновляемое сырье



Возобновляемым называется сырье, полный цикл получения которого можно осуществить за краткий (в шкале человеческой жизни) промежуток времени, не превышающий нескольких лет.

Biomass-to-liquid

Комплексная переработка зернового сырья

Оптимизация питательной среды методом крутого восхождения

- Выбор параметра оптимизации;
- Выбор исходных компонентов среды (факторов эксперимента);
- Составление матрицы планирования эксперимента;
- Линейное приближение и коэффициенты регрессии;
- Оценка значимости коэффициентов регрессии;
- Этап движения по градиенту;
- Определение оптимума системы.

Выбор параметра оптимизации

- Концентрация целевого продукта;
- Производительность по целевому продукту;
- Выход целевого продукта по субстрату;
- Минимизация стоимости среды для получения единицы целевого продукта.

Выбор исходных компонентов среды (факторов эксперимента)

		значение фактора					
Усл. обоз.	Фактор	уровень -1	уровень -1 уровень 0		Δxi 		
A	ента	Xa-Δxa Xa		Xa+∆xa	Δxa		
В	г г КОМПОНЕНТ? Ы	$Xb-\Delta xb$ Xb		Xb+∆xb	Δxb		
С		Xc-Δxc	Xc	Xc+Δxc	Δxc		
D	Наименование сред	Xd-∆xd	Xd	$Xd+\Delta xd$	Δxd		
Е	Наш	Xe-Δxe	Xe	Xe+∆xe	Δxe		

Составление матрицы планирования эксперимента

$$N_{\Pi\Phi\Im}=2^n$$
 $N_{nолуреплика}=2^{n-2}$ $N_{nолуреплика}=rac{N_{nолуреплика}}{2}$

						_		_		
		A		В	С	D		Е	ТФЭ	
1		-		-	-	-		-	Ι	
2		+		-	-	-		-	a h	
3		- +		+				<u>-</u>		_
5		_		+ <u>A</u>	B -	C -	D	<u>E</u>	Пояуреплика	_
6		+	1		- ' +		-	- - -	Ι	
7		_	2	++	+ +		-	<u>-</u>	ab	
8		+	_3	++	- +				ac	
9		-	4		+ -	+ +	_	-	bc	Четверть
10		+	5 A	- +	B	_ C +	+	$D_{\overline{}}$	$^{\rm ad}$ E	реплики
11 12	1	- +	6 -	+ +	- +	+	+	- <u>-</u>	bd-	Ι
13	2	+ -	7 +	+ 	+	+ + +	+		cd-	ac
14	3	+	8 -	-+	+++	+ - +	+	+ =	abed	bd
15		-	9 +	+ + +	+	. +	1	_		abcd
16	4	+		+	+ - +	- + +	-	++	ae -	
17	5	-	10-		++_		-	- #	be+	be
18	6	+	11+		+	+ + -	-	_ +	ce+	abce
19 20	7	- +	12_	+ +	_ + -	+	-	+ ‡	abqe	de
21	8	_	13_{+}	_ -	₊	- - + ₋	+	+ ‡	de ₊	acde
22		+	14	_+	+ +		+	#	abde	
23		-	15	++	_ +	+ -	+	#	acde	
24		+	16	+_	+ +	+ -	+	++	bcde	
25		-		-	-	+		+	ae	
26		+		-	-	+		+	ade	
27		-		+	-	+		+	bde	
28		+		+	-	+		+	abde	
29		-		-	+	+		+	cde	
30		+		-	+	+		+	acde	

Линейное приближение и коэффициенты регрессии

$$b_i = \frac{1}{N} \cdot \sum_{j=1}^{N} X_{ij} \cdot y_j$$

$$y = C_0 + C_A \cdot A + C_B \cdot B + C_C \cdot C + C_D \cdot D + C_E \cdot E$$

Оценка значимости коэффициентов регрессии

$$\overline{y}_0 = \frac{1}{m} \sum_{j=1}^m y_j$$

$$\sigma_{y_0}^2 = \frac{1}{1 - m} \sum_{j=1}^m \left(y_j - \overline{y}_0 \right)^2$$

$$\sigma_b = \sqrt{\sigma_{y_0}^2}$$

$$|b_i| \boxtimes \text{ Aptr } \mathbf{m}_b = 3$$
 $|b_i| \boxtimes \text{ Aptr } \mathbf{m}_b = 4$
 $|b_i| \boxtimes \text{ Aptr } \mathbf{m}_b = 5$

Этап движения по градиенту

$$\gamma = \left| \frac{\lambda_{ike}}{b_{6a3} \cdot \Delta x_{6a3}} \right|$$

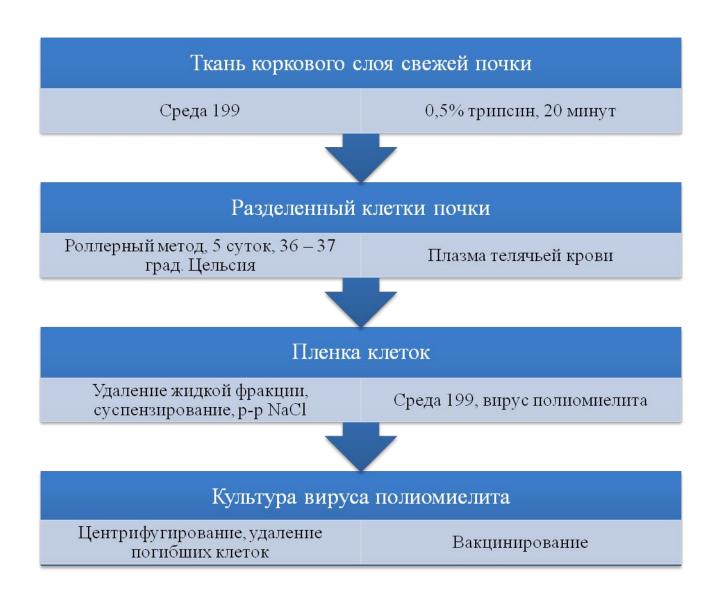
$$\lambda_{jke} = b_i \cdot \Delta x_i \cdot \gamma$$

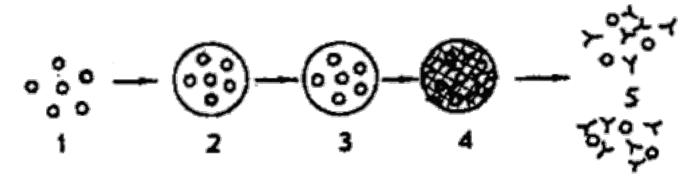

			П				
	A	В	С	D	Е	Примечания	
Нулевой уровень х0							
Интервал варьирования Δxi							
Коэффициент регрессии линейного приближения							
Произведение bi*∆хі							
Шаг крутого восхождения (неокругленный) λі*							
Шаг крутого восхождения (округленный) λі							
Порядковые номера опытов (шагов крутого восхождения)	A	В	С	D	Е	Параметр оптимизации	
1							
2							
3							
4							
5							
6							
7							
8							
9	1						
10							

Определение оптимума системы

Наилучшее значение параметра оптимизации нередко и является решением задачи. Однако чаще этапы линейного приближения и движения по градиенту необходимо повторять по несколько раз. После первого движения по градиенту в точке наилучшего значения параметра оптимизации вновь ставят линейное приближение, то есть принимают за «фон» нового эксперимента. По результатам этого эксперимента вновь выполняют крутое восхождение.

Роллерное культивирование




Среды для культивирования клеток человека и животных

- Среда 199
- Среда Игла
- BME
- Среда МакКоя
- RPM1
- Среда Финкера

Глубинное выращивание в монослое

Глубинное выращивание в инкапсулированном состоянии

Получение моноклональных антител с помощью инкапсулированных клеток гибридомы: 1 - клетки гибридомы; 2 - клетки гибридомы в растворе натрия альгината; 3 - клетки гибридомы в растворе кальция хлорида; 4 - клетки гибридом в "дырчатых" микросферах; 5- антитела и клетки-гибридомы после разрушения полилизиновой мембраны

Спасибо за внимание, братишки