

ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ХИМИЧЕСКОЙ ФИЗИКИ ИМ. Н.Н. СЕМЕНОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

Моделирование электронной структуры и сенсорных свойств наноструктурированных смешанных оксидов

Аспирант: *Курмангалеев К. С.*

Научный руководитель: *Трахтенберг Л. И* д. ф.-*м. н., профессор*

Цель исследования

Построение математической модели сенсорных слоев, адекватно описывающей закономерности работы полупроводниковых датчиков на основе бинарных нанокомпозиционных систем ачи

- Моделирование распределения электронной плотности в однокомпонентных наноструктурированных полупроводниковых системах с учетом физико-химических процессов на поверхности наночастиц.
- 2. Определение экспериментальными и квантово-химическими методами параметров электрофизических и физикохимических процессов, протекающих в сенсорной системе.
- 3. Моделирование распределения электронной плотности в двухкомпонентных наноструктурированных полупроводниковых системах.
- 4. Сенсорный эффект в одно- и двухкомпонентных наноразмерных системах. Сопоставление теории с

2

СЭМ-изображение чувствительной плёнки In₂O₃

Средний размер наночастиц - 70 nm

Механизм сенсорного эффекта

wave vector Модель зонной диаграммы оксида индия. Реакция **О^{ad} + e⁻ = О^{(-)ad} уменьшает** проводимость системы.

Восстановительные газы (H_2, \dots) реагируют с ионами кислорода $(H_2^{ad} + O^{(-)ad} \rightarrow H_2O^{des} + e^{-})$, электроны освобождаются и переходят в зону проводимости. Проводимость растет – сенсорный эффект.

Чувствительность сенсора –

$$\Theta(P_{H_2},T) = \frac{n_c(P_{H_2},T)}{n_c(0,T)}$$

*n*_с - равновесная концентрация электронов в зоне проводимости

Почему можно использовать статистическое описание?

wave vector

Плотность электронов в зоне проводимости In_2O_3 $n_c \sim 10^{18} - 10^{19}$ см⁻³ На одну наночастицу диаметром l = 100 нм приходится $(\pi/6)l^3n_c \approx 10^3 - 10^4$ электронов. Часть электронов находится на поверхности.

5

Как электроны распределяются по уровням энергии? Большой термодинамический потенциал Ω_c Концентрация электронов в каждой из подсистем

Электрическое поле внутри наночастицы 0 **O**-0- $\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\varphi}{\partial r}\right) = -\frac{4\pi}{\varepsilon}n(r)$ (7) 0 **R**₀ 0 0 O⁻ $n(r) = \begin{cases} n_{+}(r) - n_{c}(r), & 0 \le r \le \mathbb{R}_{0} \\ -\frac{N_{O^{-}}}{\frac{4}{3}\pi \left[(\mathbb{R}_{0} + d)^{3} - \mathbb{R}_{0}^{3} \right]}, & \mathbb{R}_{0} \le r \le \mathbb{R}_{0} + d \end{cases}$ neutral 0area 0 0-0 0 0 Граничные $= -\frac{N_{O^-}}{\varepsilon R_0^2} \frac{\mathbf{y} \mathbf{C} \mathbf{D} \mathbf{B} \mathbf{H} \mathbf{g}}{\frac{d\varphi}{dr}}\Big|_{r=R_0+d} = 0 \qquad \frac{d\varphi}{dr}\Big|_{r=0} = 0$ (8) Условие электронейтральности $N_{O^{-}} = 4\pi \int_{0}^{R_{0}} dr r^{2} [n_{+}(r) - n_{c}(r)]$ (9)

Кинетические уравнения сенсорного процесса в стационарном режиме

$$O_2^{gas} \rightleftharpoons O_2^{ad}$$

$$O_2^{ad} \rightleftharpoons 2O^{ad}$$

$$O_2^{ad} \nleftrightarrow 2O^{ad}$$

$$O^{ad} + e^- \nleftrightarrow O^{(-)ad}$$

$$O^{ad} + O^{(-)ad} \rightarrow O_2^{ad} + e^-$$

$$H_2 + O^{(-)ad} \rightarrow H_2O + e^-$$

$$\frac{dn_{O_2}}{dt} = K_{O_2}^{ad} \left(1 - \frac{n_{O_2} + n_O}{n_{O_2}^{lim}} \right) - K_{O_2}^{des} n_{O_2} + K_{rec} \left(n_O^2 - n_O n_{O^-} \right) - K_{dis} n_{O_2} \left(1 - \frac{n_{O_2} + n_O}{n_{O_2}^{lim}} \right)^2 = 0$$

$$\frac{dn_O}{dt} = -2K_{rec} \left(n_O^2 - n_O n_{O^-} \right) + 2K_{dis} n_{O_2} \left(1 - \frac{n_{O_2} + n_O}{n_{O_2}^{lim}} \right)^2 - K_{H_2O} \widetilde{n}_{H_2} n_{O^-} = 0$$

$$\frac{dn_O}{dt} = k_{cap} \left(n_O - n_{O^-} \right) - K_{rec} \left(n_O - n_{O^-} \right) n_{O^-} - K_{ret} n_{O^-} - K_{H_2O} \widetilde{n}_{H_2} n_{O^-} = 0$$

*n*_{O₂}, *n*_O, *n*_{O[−]} – стационарные концентрации молекул, атомов и ионов кислорода

Радиальная зависимость плотности электронов проводимости в наночастице In,O₃

Радиальная зависимость плотности электронов проводимости для разных температур при радиусе наночастицы $R_{0} =$ 37 нм. Энергия связи электрона на адсорбированном атоме O⁻ - $\varepsilon_{0} = 0.54$ эВ.

Вставить картинку с водородом

Радиальная зависимость плотности электронов проводимости в наночастице In,O,

Зависимость относительной плотности электронов проводимости от расстояния от центра (r/R₀) для разных радиусов R₀ наночастиц при температуре T = 600 К.

Электростатический потенциал внутри наночастицы в In₂O₃

Число зарядов на поверхности

Зависимость числа поверхностных зарядов от радиуса наночастицы при температуре 600 К. Зависимость числа поверхностных зарядов от температуры при радиусе наночастицы 37 нм.

Т-зависимость отклика сенсора In₂O₃ на водород

Экспериментальная (*a*) и теоретическая (б) зависимости чувствительности **In₂O₃** сенсора от температуры для различных концентраций водорода.

Причины некоторого несоответствия:

1. Использован средний радиус наночастиц вместо разброса частиц по размерам;

2. Вычисления проводились для сферических наночастиц.

Bodneva V.L., Ilegbusi O.J., Kozhushner M.A., Kurmangaleev K.S., Posvyanskii V.S., Trakhtenberg L.I. Modeling of sensor properties for reducing gases and charge distribution in nanostructured oxides: A comparison of theory with experimental data // Sensors and Actuators B: Chemical. - 2019. - V. 287, № 15. - P. 218-224.

Параметры, используемые при расчёте отклика сенсора In₂O₃ на водород

Экспериментальные и расчётные данные	Подобранные коэффициенты
$\chi = 1.5$	$\varepsilon_{dis}^{(1)} = 1.43$ эВ
$\varepsilon_d = 0.2 \ \mathrm{sB}$	$\alpha_{o_2}^{(1)} = 2.2 \times 10^{-7} \times T^2 - 2.29 \times 10^{-4} \times T + 0.06$
$n_d = 1.48 \times 10^{19} \mathrm{cm}^{-3}$	$v_{ret} = 2.6 \times 10^4 c^{-1}$
$\tilde{n}_{O_2} = 7.76 \times 10^{24} \text{ cm}^{-3}$	$\varepsilon_{ret} = 0.544$ 9B
$v_{O_2}^{(1,2)} = 10^{13} \text{ c}^{-1}$	$K_{rec(1)} = 9.5 \times 10^{-18} \text{ m}^2 \text{c}^{-1}$
$\nu_{0-0}^{(1)} = 2.66 \times 10^{13} c^{-1}$	$K_0 = 6.13 \times 10^{-14} \mathrm{m}^2 \mathrm{c}^{-1}$
$\varepsilon_{des}^{(1)} = 0.79 \ \mathrm{sB}$	
$n_{O_2}^{lim(1)} = 4.28 \times 10^{17} \text{ m}^{-2}$	
$k_{cap}(T) = 3.508 + 0.0135 \times T - 1.1 \times 10^{-5} \times T^2 c^{-1}$	
$K_{H_20}(T) = 1.64739 \times 10^{-22} - 1.43917 \times 10^{-20} \times 0.99^{\rm T} {\rm m}^3 c^{-1}$	

Кинетика сопротивления при напуске водорода

МОЛСКУЛЫ ВОДЫ. $\mathbf{r}(t) = \frac{R(t) - R(\infty)}{R(t_0) - R(\infty)},$ где R(t) – сопротивление в момент времени $t, R(\infty)$ – установившееся сопротивление,

 $R(t_0)$ – сопротивление в момент напуска водорода

Кинетика проводимости при напуске кислорода

Кинетика проводимости плёнки In₂O₃ после напуска кислорода. Температура - 400 ° С. *T*- зависимость константы скорости k_{cap} захвата электрона проводимости адсорбированными атомами кислородом.

Адсорбция O₂ на поверхность In₂O₃ (011)

Расчёт энергии адсорбции основан на теории функционала плотности методом псевдопотенциала в базисе плоских волн с энергией обрезки 680 эВ, в обобщенном градиентном приближении с РВЕ обменно-корреляционным функционалом. Схема *k*-сетки, построенная по методу Монкхорста-Пака, имеет размеры 6 × 6 × 1. Все процессы оптимизации проводились до тех пор, пока силы, действующие на ионы, не становились Мерныше ЭлЭзр В/А., Михайлова Т.Ю., Трахтенберг Л.И. Хемосорбция кислорода на поверхности нанокристалла In_2O_3 // Неорганические материалы. - 2020. - Т. 56, № 11. - С. 1199-1207.

ПЭМ-изображение тонкой плёнки 3% CeO₂ - 97% In₂O₃

 $1 - In_2O_3, 2 - CeO_2; (b)$ схематичное представление элемента плёнки (the ratio of their radii is one to twelve); (c) and (d) – распределение размеров частиц оксида индия (c) и оксида церия (d) в композите 3% CeO₂ - 97% In₂O₃.

K.S. Kurmangaleev, M.I. Ikim, M.A. Kozhushner, L.I. Trakhtenberg, Electron distribution and electrical resistance in nanostructured mixed oxides CeO₂-In₂O₃, Applied Surface Science, 2021, V. 546, P. 149011

Кинетические уравнения сенсорного процесса двухкомпонентной системы в стационарном режиме

$$\frac{dn_{O_{2}}^{(1)}}{dt} = K_{O_{2}}^{ad(1)} \left(1 - \frac{n_{O_{2}}^{(1)} + n_{O}^{(1)}}{n_{O_{2}}^{lim(1)}} \right) - K_{O_{2}}^{des(1)} n_{O_{2}}^{(1)} + K_{rec(1)} \left((n_{O}^{(1)})^{2} - n_{O}^{(1)} n_{O_{2}} \right) - K_{dis(1)} n_{O_{2}}^{(1)} \left(1 - \frac{n_{O_{2}}^{(1)} + n_{O}^{(1)}}{n_{O_{2}}^{lim(1)}} \right)^{2} = 0$$
(12)
$$\frac{dn_{O}^{(1)}}{dt} = -2K_{rec(1)} \left((n_{O}^{(1)})^{2} - n_{O}^{(1)} n_{O} \right) + 2K_{dis} n_{O_{2}}^{(1)} \left(1 - \frac{n_{O_{2}}^{(1)} + n_{O}^{(1)}}{n_{O_{2}}^{lim(1)}} \right)^{2} + K_{O} n_{O}^{(2)} \left(n_{O_{2}}^{lim(1)} - (n_{O_{2}}^{(1)} + n_{O}^{(1)}) \right) - K_{H_{2}O} \tilde{n}_{H_{2}} n_{O} = 0$$

$$\frac{dn_{O}}{dt} = k_{cap} \left(n_{O}^{(1)} - n_{O} \right) - K_{rec(1)} \left(n_{O}^{(1)} - n_{O} \right) n_{O} - K_{ret} n_{O} + K_{O} n_{O}^{(2)} \left(n_{O_{2}}^{lim(1)} - (n_{O_{2}}^{(1)} + n_{O}^{(1)}) \right) - K_{H_{2}O} \tilde{n}_{H_{2}} n_{O} = 0$$

$$\frac{dn_{O_2}^{(2)}}{dt} = K_{O_2}^{ad(1)} \left(1 - \frac{n_{O_2}^{(2)} + n_{O}^{(2)}}{n_{O_2}^{lim(2)}} \right) - K_{O_2}^{des(2)} n_{O_2}^{(2)} + K_{rec(2)} (n_{O}^{(2)})^2 - K_{dis(2)} n_{O_2}^{(2)} \left(1 - \frac{n_{O_2}^{(2)} + n_{O}^{(2)}}{n_{O_2}^{lim(2)}} \right)^2 = 0$$
(13)
$$\frac{dn_{O}^{(2)}}{dt} = -2K_{rec} (n_{O}^{(2)})^2 + 2K_{dis} n_{O_2}^{(2)} \left(1 - \frac{n_{O_2}^{(2)} + n_{O}^{(2)}}{n_{O_2}^{lim(2)}} \right)^2 - K_{O} n_{O}^{(2)} (n_{O_2}^{lim(1)} - (n_{O_2}^{(1)} + n_{O}^{(1)})) = 0$$

Сенсорный эффект в бинарной системе СеО₂-In₂O₃

Полученные результаты указывают на спилловер кислорода на поверхность наночастиц In₂O₃ с контактирующих с ними нанокластеров CeO₂.

Параметры, используемые при расчёте отклика сенсора СеО₂-In₂O₃ на водород

Экспериментальные и расчётные данные	Подобранные коэффициенты
$\chi = 1.5$	$\varepsilon_{dis}^{(1)} = 1.43 \text{ BB}$
$\varepsilon_d = 0.2 \ \mathrm{sB}$	$\varepsilon_{dis}^{(2)} = 0.014 \Im B$
$n_d = 1.48 \times 10^{19} \mathrm{cm}^{-3}$	$\varepsilon_{des}^{(2)} = 0.082$ əB
$\tilde{n}_{O_2} = 7.76 \times 10^{24} \text{ cm}^{-3}$	$\alpha_{O_2}^{(1)} = 2.2 \times 10^{-7} \times T^2 - 2.29 \times 10^{-4} \times T + 0.06$
$v_{O_2}^{(1,2)} = 10^{13} \mathrm{c}^{-1}$	$\alpha_{O_2}^{(2)} = 4.3 \times 10^{-4}$
$\nu_{O-O}^{(1)} = 2.66 \times 10^{13} c^{-1}$	$v_{ret} = 2.6 \times 10^4 c^{-1}$
$\varepsilon_{des}^{(1)} = 0.79 \ \mathrm{sB}$	$\varepsilon_{ret} = 0.544$ 3B
$n_{O_2}^{lim(1)} = 4.28 \times 10^{17} \text{ m}^{-2}$	$K_{rec(1)} = 9.5 \times 10^{-18} \text{ m}^2 \text{c}^{-1}$
$n_{O_2}^{lim(2)} = 6.43 \times 10^{11} \text{ m}^{-2}$	$K_{rec(2)} = 9.5 \times 10^{-19} \mathrm{m}^2 \mathrm{c}^{-1}$
$k_{cap}(T) = 3.508 + 0.0135 \times T - 1.1 \times 10^{-5} \times T^2 c^{-1}$	$K_0 = 6.13 \times 10^{-14} \text{ m}^2 \text{c}^{-1}$
$K_{H_20}(T) = 1.64739 \times 10^{-22} - 1.43917 \times 10^{-20} \times 0.99^{\mathrm{T}} \mathrm{m}^3 c^{-1}$	

Выводы и результаты

1. Найдены зависимости электронной плотности в наночастицах в однокомпонентных полупроводниковых системах от внешних условий, в которых находится чувствительный элемент: температура, концентрация адсорбированного кислорода и анализируемого газа.

2. В рамках теории функционала плотности получены параметры сенсорной системы: теплота адсорбции, энергия активации адсорбции, валентная частота колебания связи в молекуле кислорода, которые позволяют описать процессы, происходящие при адсорбции молекулярного кислорода на поверхность оксида индия (011).

3. Получено распределение электронной плотности в двухкомпонентных полупроводниковых системах при различных температурах, радиусах наночастиц и концентрациях компонентов с учетом физико-химических процессов на поверхности наночастиц.

4. Найдены теоретические зависимости сенсорного эффекта в одно- и двухкомпонентных наноразмерных системах от температуры. Получено согласие теории с экспериментальными данными на примере чувствительности к водороду систем на основе In₂O₃ и CeO₂-In₂O₃.

Список работ, опубликованных по теме диссертации

- Bodneva V.L., Ilegbusi O.J., Kozhushner M.A., Kurmangaleev K.S., Posvyanskii V.S., Trakhtenberg L.I. Modeling of sensor properties for reducing gases and charge distribution in nanostructured oxides: A comparison of theory with experimental data // Sensors and Actuators B: Chemical. 2019. V. 287, № 15. P. 218-224.
- Курмангалеев К.С., Кожушнер М.А., Трахтенберг Л.И. Электрическое сопротивление структурированных на наноуровне бинарных оксидов СеО₂-In₂O₃ // Химическая физика. 2020. Т. 39, № 11. С. 89-92.
- Курмангалеев К.С., Михайлова Т.Ю., Трахтенберг Л.И. Хемосорбция кислорода на поверхности нанокристалла In₂O₃ (011) // Неорганические материалы. 2020. Т. 56, № 11. С. 1199-1207.
- Kurmangaleev K.S., Ikim M.I., Kozhushner M.A., Trakhtenberg L.I. Electron distribution and electrical resistance in nanostructured mixed oxides CeO₂-In₂O₃ // Applied Surface Science. 2021. V. 546. P. 149011
- Курмангалеев К.С., Михайлова Т.Ю., Трахтенберг Л.И. Неэмпирическое исследование особенностей адсорбции кислорода на поверхность In₂O₃ // Неорганические материалы. 2022. Т. 58, № 3. С. 290-296.

Благодарю за внимание!