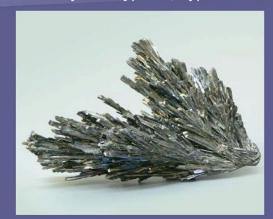
Пигменты и краски


Федорова Анастасия 11A Для придания определенного цвета тканям, пластмассе, пищевым продуктами многим другим изделиям используют разнообразные красящие вещества. Краску готовят, смешивая красящее вещество с жидкостью, называемой связывающим веществом или просто связывающим. Красящие вещества, растворимые в связывающем, называют красителями, а нерастворимые пигментами. Многие пигменты представляют собой неорганические соединения, а красителиорганические.

Первоначально в качестве пигментов использовали природные материалы, которые отделяли от пустой породы и истирали в порошок.Знатные египтянки в качестве румян для лица использовали киноварь HgS, подчеркивали глаза сурьмяным блескомSb2S3

Киноварь - сульфид ртути - HgS

Антимонит Sb₂S₃

От греч. «антимониум» - сурьма, сурьмяный блеск

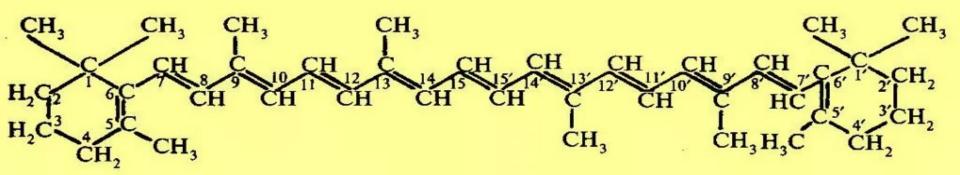
Уже в Древнем Риме некоторые пигменты стали получать искусственно, например свинцовые белила -основный карбонат свинца. При действии на раствор хромата калия K2CrO4 нитратом свинца образуется желтый осадок хромата свинца. Свинцовые белила сейчас не используются из-за их токсичности.

На смену им пришли *титановые белила*-краска на основе пигмента оксида титана(4)Тi02.

Важнейшие зеленые пигменты -гидратированный оксид хрома Cr2O3 *2H2O, оксид хрома, твердый раствор оксида кобальта(2) в оксиде цинка ZnO, медянка-смесь основных ацетатов меди(2).В качестве красных, коричневых и желтых пигментов используют различные формы оксидов и гидроксидов железа:желтый Fe2O3*2H2O, красный Fe2O3, черный Fe3O4.Пигмент светло-коричневого цвета содержит 93%Fe2O3 и 7%FeO, ярко-коричневый-85%Fe2O3 и 15%FeO.

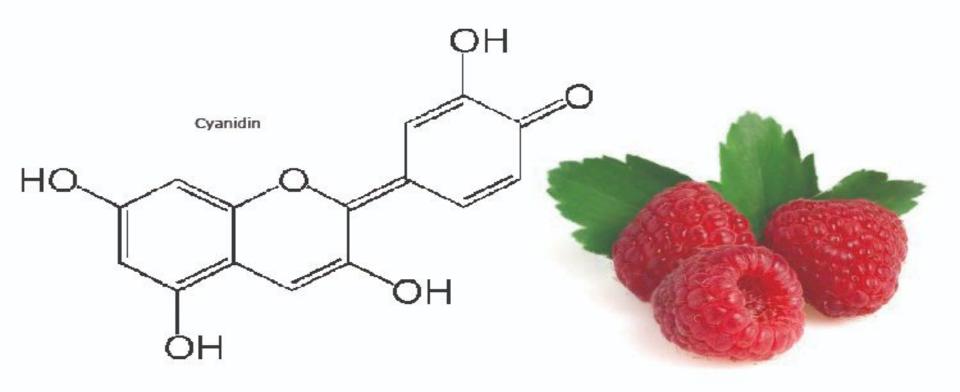
Азурит-это основный карбонат медиСи₃(СО₃)₂(ОН)₂

Лазурит представляет собой природный алюмосиликат

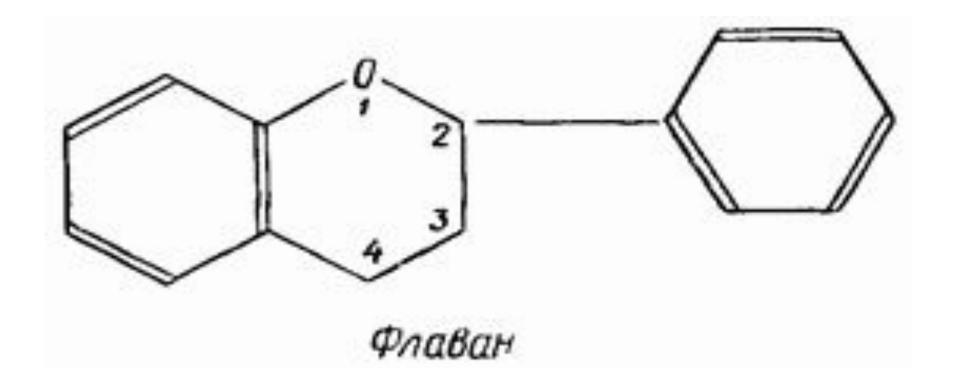

Металлические пигменты представляют собой тонко измельченный порошок и пудры алюминия,меди и цинка и их сплавов.

Органические заместители, введение которых в молекулу приводит возникновению окраски, называют хромофорами, а сами окрашенные вещества-

хромогенами.


Таблица 7. Хромофорные и ауксохромные группы.

Хромофорные группы	Ауксохромные группы	
—С— (карбонильная группа) О	ОН– (гидроксогруппа);	
———— (тиокарбонильная группа) S	NH ₂ - (аминогруппа); (CH ₃) ₂ N- триметиламиногруппа); (C ₂ H ₅) ₂ N- (триэгиламиногруппа); СH ₃ -O- (метоксигруппа); и др.	
—N=N— (азо-N-оксидная группа) ↓ О		
–N=N– → =N–NH– (азогруппа) → (гидразогруппа)		
О=N- → НО-N= (нигрозогруппа) → (оксимная группа)		
(бензольная → (хиноидная		
стуктура) стуктура)	52	



Структура В-каротина

Многие вещества, придающие темно-красную, малиновую, фиолетовую и синюю окраску лепесткам цветов, листьям и плодам, являются производными флавана, состоящего из :

Среди искусственно полученных красителей большую роль играют азосоединения, к числу которых принадлежит индикатор метилоранж. К числу ароматических веществ принадлежит также и красители-производные углеводорода трифенилметана. Они обладают ярким и чистым цветом.

Получение ЛАКМУСА – индикатора кислотности

Лакмус (от гол. lakmoes) — красящее вещество природного происхождения, один из первых и наиболее широко известных кислотно-основных индикаторов

Пармелия

Таблица 1

Формул	Лакмус	Фенол-	Среда	Какие
а соли		фталеин	раствора	ионы
AICI ₃	красны й		кислая	H ⁺ >
Na ₂ CO ₃	синий	малино- вый	щелочная	OH⁻>
NaCl			нейтраль -ная	H ⁺ = OH [−]

Производными трифенилметана является краситель бриллиантовый зеленый (зеленка)

Красители Е100-199

Это вещества растительного и химического происхождения, которые используют для:

✓ восстановления утраченного цвета продукта.

✓ для придания цвета, а также его интенсивности бесцветным продуктам.

К таким продуктам можно отнести :газированные напитки, кондитерские изделия, мороженое, иногда красная рыба и др.

Спасибо за внимание!