Звезды, которые могут существовать в нашей вселенной

Подготовила Лойко Анастасия, учащаяся 11 «А»

Кварковые звезды

На протяжении десятилетий астрономы предполагали, что нейтронная звезда будет оставаться в

Но по мере развития крантовойствории, астрофизики предложили новый тип звезд, который мог бы появиться, если бы дегенеративное давление нейтронного ядра прекратилось. Называется она кварковая звезда.

Электрослабые

3 В **Сед**авн Мизики предложили теоретическую звезду, которая могла бы суще-ствовать между кварковой звездой и черной

Так называемая электроблабая звезда могла бы поддерживать равновесие благодаря сложному взаимодействию между слабой ядерной силой и электромагнитной силой, известному как электрослабая сила.

Объект Торна — Житковой

В 1977 году Кип Торн и Анна Житкова опубликовали работу, подробно описывающую новый тип звезды под названием «объект Торна—

(ОТЖ). ОТЖ — это ги**й (мидкожой в**езда, образованная столкновением красного сверхгиганта и маленькой, плотной нейтронной звезды.

Замерзшая звезда

По мере старения

новые и

включая

замороженные звезды. Этот тип звезд был предложен в 1990-х. С обилием металлов во Вселенной, новообразованным звездам потребуются температуры ниже, чтобы стать звездами главной последовательности. Самые малые звезды с массой в 0,04 звездной (порядка массы Юпитера) могут стать звездами главной последовательности, поддерживая ядерный

Магнитосферически й вечно коллапсирующий объект


В 2003 году ученые заявили, что черные дыры не являются на самом деле сингулярностями, как привыкли считать, а являются под названием «макти грефермичания вышем коллапсирующий объект»

Звезды населения III

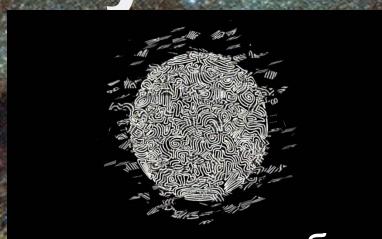
Звезды на другом конце спектра, образованные из первичных газов, оставшихся от Большого Взрыва, называют

звездами населения III.

Квазизвезда

она прячет черную дыру. Квазизвезды должны были образоваться из массивных звезд населения III.

Преонная звезда


Преон — это точечная частица, у которой нет пространственного расширения. Преонные звезды были бы

чрезвычайно малыми, размером между горошиной и футбольным мячом. Масса, упакованная в этом крошечном объеме, была бы равна массе Луны. Преонные звезды были бы легкими по астрономическим стандартам, но куда плотнее нейтронных звезд, самых плотных наблюдаемых объектов

Звезда Планка

Предложенная звезда Планка изначально задумывалась для разрешения информационного парадокса черной дыры. Если рассматривать черную дыру как точку сингулярности, у нее будет неприятный побочный эффект: информация будет уничтожаться, проникая в черную дыру, нарушая законы сохранения. Однако, если в центре черной дыры будет звезда, это решит проблему и поможет также с вопросами горизонта событий черной дыры.

Пушистый клубок

Пушистый клубок — название, которое было придумано физиками для смертельной области космоса,

области космоса, мгновенно вас убить. к Барыя пилиестого клубка вытекает из попытки описать черную дыр с использованием идей теории струн. По существу, пушистый клубок — это не настоящая звезда в том смысле, что она не является миазмо пылающей плазмы, поддерживаемой термоядерным синтезом. Скорее это регион запутанных струн энергии, поддерживаемых их собственной внутренней энергией.

Используемые источники:

- 1. https://hi-news.ru/space/10-strannyx-teoreticheskix-zvezd.html
- 2. https://russian.rt.com/article/325706-drevne e-serdce-mlechnogo-puti-naideny-samye-star ye

Спасибо за внимание!