

Linear Regression Models (II)

Lecture outline

- 1. Assumptions of Linear Regression
- 2. R Squared and Adjusted R Squared
- 3. F-test for model significance
- 4. t-test for parameter significance

Assumptions of Linear Regression

- •Normality: Multiple regression assumes that the error terms are normally distributed.
- •Linearity: There must be linear relationship between response variable and independent variables (Scatterplots).
- •No Multicollinearity: the independent variables are not highly correlated with each other (Correlation matrix).
- Homoscedasticity: the variance of error terms are similar across the values of the independent variables (Plot of residuals vs predictor variables).

Normality

Normality: Multiple regression assumes that the error terms are normally distributed.

Plot QQ (Quantile-quantile) plots are used to visually check the normality of the data.

As all the points fall approximately along the straight line, we can assume normality.

R Syntax: plot(model\$residuals)

Linearity

Linearity:

There must be linear relationship between response variable and independent variables.

No Multicollinearity

No Multicollinearity:

The independent variables are not highly correlated with each other.

	CompPrice	Income	Advertising
CompPrice	1.00	-0.08	-0.02
Income	-0.08	1.00	0.06
Advertising	-0.02	0.06	1.00

Homoscedasticity

Homoscedasticity:

The variance of error terms are similar across the values of the independent variables (Plot of residuals vs predictor variables).

par(mfrow=c(1,2))
plot(Carseats\$Income,model\$residuals)
plot(Carseats\$Advertising, model\$residuals)

R-Squared

R-squared (R²), also known as a Coefficient of Determination, is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable or variables in a regression model.

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y}_{i})^{2}}$$

Coefficients:

Residual standard error: 2.701 on 396 degrees of freedom Multiple R-squared: 0.09221, Adjusted R-squared: 0.08533 F-statistic: 13.41 on 3 and 396 DF, p-value: 2.374e-08

Adjusted R-Squared

- The **adjusted R-squared** is a modified version of R-squared that has been adjusted for the number of predictors in the model.
- The adjusted R-squared increases only if the new term improves the model more than would be expected by chance.

Adj R² = 1 -
$$\frac{\frac{SSE}{n-k}}{\frac{SST}{n-1}}$$
 = 1 - $\frac{(1-R^2)(n-1)}{n-k-1}$

Here n- # of observations k - # of independent variables

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 2.701 on 396 degrees of freedom Multiple R-squared: 0.09221, Adjusted R-squared: 0.08533

F-statistic: 13.41 on 3 and 396 DF, p-value: 2.374e-08

Testing for Significance: F-test

The *F* test is used to determine whether a significant relationship exists between the dependent variable and the set of <u>all the independent variables</u>.

The *F* test is referred to as the <u>test for overall</u> <u>significance</u>.

Testing for Significance: F-test

Hypotheses

$$H_0: \ \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

 H_a : At least one of the parameters (betas) is not equal to zero.

Test Statistics

$$F = MSR/MSE$$

Rejection Rule

Reject H_0 if p-value $\leq \alpha$ or if $F > F_\alpha$ where F_α is based on an F distribution with k d.f. in the numerator and n - k - 1 d.f. in the denominator.

Example

Let's use the insurance dataset to predict health care charges based on age, gender, bmi (body mass index) and smoker status.

Charges =
$$\beta_0 + \beta_1$$
*Age + β_2 *Male + β_3 *Bmi + β_4 *Smoker + ε

Hypotheses for Overall Significance (F-test):

Ho:
$$\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$

Ha: At least one of the betas is not zero.

Since p-value = $0.000...22 < \alpha = 0.01$,

We reject Ho and conclude that overall model is

Significant in predicting insurance charges.

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	-11633.49	947.27	-12.281	<2e-16	***
age	259.45	11.94	21.727	<2e-16	***
sexmale	-109.04	334.66	-0.326	0.745	
bmi	323.05	27.53	11.735	<2e-16	***
smokeryes	23833.87	414.19	57.544	<2e-16	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 6094 on 1333 degrees of freedom Multiple R-squared: 0.7475, Adjusted R-squared: 0.7467 F-statistic: 986.5 on 4 and 1333 DF, p-value: < 2.2e-16

Testing for Significance: t-test

Hypotheses

$$H_0: \beta_i = 0$$

$$H_a: \beta_i \neq 0$$

Test Statistics

$$t_{stat} = \frac{b_i}{s_{b_i}}$$

Rejection Rule

Reject H_0 if p-value $\leq \alpha$ or if $|t| \geq t_{\alpha/2}$ where $t_{\alpha/2}$ is based on a t distribution with n - k - 1 degrees of freedom.

Example

Let's use the insurance dataset to predict health care charges based on age, gender, bmi (body mass index) and smoker status.

Charges =
$$\beta_0 + \beta_1 *Age + \beta_2 *Male + \beta_3 *Bmi + \beta_4 *Smoker + \varepsilon$$

Hypotheses for numerical variables for their significance (t-test): Age, Bmi

For Age:

Ho:
$$\beta_1 = 0$$

Ha:
$$\beta_1 \neq 0$$

For Bmi:

Ho:
$$\beta_3 = 0$$

Ha:
$$\beta_3 \neq 0$$

Since both p-values are smaller than alpha of 0.01, We reject Ho and conclude that age and bmi variables are significant.

Coefficients:

	LS CLINACC .	Jea. Liloi	CVULUC	11(/101)	
(Intercept)	-11633.49	947.27	-12.281	<2e-16	***
age	259.45	11.94	21.727	<2e-16	***
sexmale	-109.04	334.66	-0.326	0.745	
bmi	323.05	27.53	11.735	<2e-16	***
smokeryes	23833.87	414.19	57.544	<2e-16	***
Signif. code	es: 0 '***	' 0.001'**	° 0.01	'*' 0.05 '	.'0.1 '1

Estimate Std. Frror t value Pr(>|t|)

Residual standard error: 6094 on 1333 degrees of freedom Multiple R-squared: 0.7475, Adjusted R-squared: 0.7467 F-statistic: 986.5 on 4 and 1333 DF, p-value: < 2.2e-16

Exercise 1

38 random movies were selected to develop a model for predicting their revenues.

We have the following variables in the dataset:

- *USRevenue* movie's revenue in the US (mln\$)
- *Rating* restrictions based on age (PG, PG-13, R)
- *Budget* budget (expenditure) of the movie (mln\$)
- *Opening* revenue on the opening weekend (mln\$)
- *Theaters* number of theaters the movie was in for the opening weekend
- *Opinion* IMDb rating (1 to 10, 10 being the best)

Exercise 1

- a) Fit a model to predict USRevenue using Rating, Budget, Opening as independent variables.
- b) Check the assumptions of the linear regression
- c) Interpret the value of R^2 in part a.
- d) Add Opinion as another explanatory variable into your model and see how your R² and adjusted R² changed. How would you explain this?
- e) Test for overall significance of the model. Use $\alpha = 0.05$.
- f) Test whether Budget, Opening and Opinion are significant variables separately. Use $\alpha = 0.05$.

Thank you for your attention!

Homework:

- a) Refer to Housing Data. Fit a model to predict Price using all independent variables.
- a) Check the assumptions of the linear regression
- a) Interpret the value of R^2 in part a.
- a) Test for overall significance of the model. Use $\alpha = 0.01$.
- a) Test whether numerical variables are significant separately. Use $\alpha = 0.01$.
- a) Now remove rooms and bathrooms from the model and compare with the original