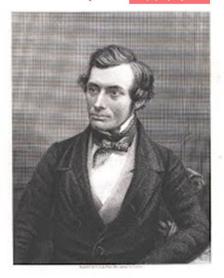
# Лекция

# Предмет коллоидной химии. Общая характеристика дисперсных систем


# Коллоидная химия — ...

- ... наука о поверхностных явлениях и дисперсных системах.
- ... наука о коллоидном состоянии вещества.
- ... физика и химия реальных тел.

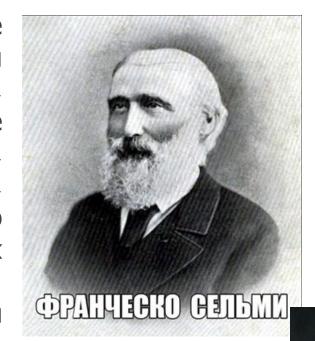
Термин «*коллоид*» (от греч. *kolla+eidos* («клей» + «вид») слово, означающее «имеющие вид клея».) ввел английский ученый Т.Грэм в 1861 г, которого принято считать основоположником коллоидной химии. Грэм считал, что вещества в природе следует разделить на две группы кристаллоиды, образующие обычные растворы и коллоиды, дающие коллоидные растворы, по многим свойствам отличающиеся от обычных растворов. Грэм предпринял систематические исследования коллоидных растворов.

Основателем коллоидной химии является английский ученый Томас Грэм (1805-1869), который в 50-60-е годы позапрошлого столетия ввел в обращение основные коллоидно-химические понятия. Предшественниками являются – Яков Берцелиус и итальянский химик Франческо Сельми.

В 30-е годы XIX века Берцелиус описал ряд осадков, проходящих при промывании через фильтр (кремниевая и ванадиевая кислоты, хлористое серебро, берлинская лазурь и др.). Эти проходящие через фильтр осадки Берцелиус назвал «растворами», но в то же время он указал на их близкое сродство с эмульсиями и суспензиями, со свойствами которых он был хорошо знаком.



PROTESSOR SHABAN, E.G. S.


The makan

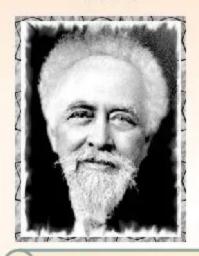


Берцелиус Йенс Якоб

Франческо Сельми в 50-е годы XIX века продолжил работы в этом направлении, ища физико-химические различия между системами, образованными осадками, проходящими через фильтр (он назвал их «псевдорастворами») и обычными истинными растворами.

Английский ученый Майкл Фарадей в 1857 г. синтезировал коллоидные растворы золота – взвесь Аи в воде размерами частиц от 1 до 10 нм. и разработал методы их стабилизации.




# Лауреаты Нобелевской премии за работы в области коллоидной химии

1925 г.



Р. Зигмонди

австрийский химик, «за установление гетерогенной природы коллоидных растворов и за разработанные в этой связи методы, имеющие фундаментальное значение в современной коллоидной химии» 1926 г.



Ж. Перрен

французский физик, «за работу по дискретной природе материи и, в особенности, за открытие седиментационно-диффузионного равновесия»

1926 г.



Т. Сведберг

шведский ученый,
«за работы в
области
дисперсных
систем» (прежде
всего за создание
ультрацентрифуги
для определения
размеров высокодисперсных частиц
и макромолекул)

1932 г.



И. Ленгмюр

американский физикохимик, «за открытия и исследования в области химии поверхностных явлений»

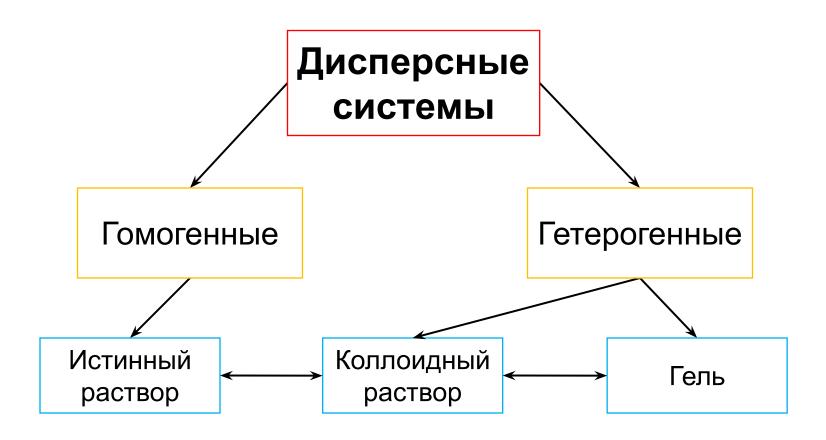
Коллоидная химия- наука о дисперсных системах и поверхностных свойств явлениях, взаимосвязи физико-химических и механических дисперсных систем.

**Дисперсные системы** – гетерогенные системы, которые состоят, по крайней мере, их двух фаз, и одна из них прерывная – дисперсная фаза, а вторая непрерывная – дисперсионная среда.

Фаза – (термодинамическая) – гомогенная часть гетерогенной системы с постоянными или непрерывно меняющимися от точки к точке интенсивными переменными.








## Дисперсные системы -

гетерогенные системы, состоящие из дисперсионной среды (Д. с.) - растворителя, и дисперсной фазы (Д.ф.) — растворенного вещества.

Характерным свойством дисперсной системы является наличие большой *межфазной поверхности*, поэтому свойства поверхности для нее являются определяющими.

**Дисперсная система** – совокупность диспергированных частиц вместе со средой, в которой они распределены.



**Дисперсная фаза (ДФ)** – совокупность диспергированных частиц, размеры которых больше молекулярных.

Дисперсионная среда (ДС) — однородная непрерывная фаза, в которой возможен переход из одной точки в другую без выхода за пределы этой фазы.



По размеру частиц ДФ

Классификаци и дисперсных систем

По агрегатному состоянию ДФ и ДС

По силе взаимодействия частиц ДФ

# По размеру частиц ДФ

| Размер                              | Название                                    | Основные признаки                              |                                                   |
|-------------------------------------|---------------------------------------------|------------------------------------------------|---------------------------------------------------|
| частиц,<br>м                        | дисперсной<br>системы                       | Прозрачность                                   | Прохождение<br>через фильтр                       |
| > 10 <sup>-3</sup>                  | Грубодисперсная                             | Мутные, частицы ad oculus                      | Не проходят                                       |
| $10^{-3} - 10^{-5}$                 | Микрогетерогенна<br>я                       | Мутные, частицы<br>видны в микроскоп           | Не проходят                                       |
| 10 <sup>-7</sup> – 10 <sup>-9</sup> | Ультрамикрогетер<br>огенная /<br>коллоидная | Прозрачные, при боковом освещении опалесцируют | Проходят через<br>фильтр, но не<br>через мембрану |
| $10^{-8} - 10^{-9}$                 | Молекулярно-<br>дисперсная                  | Прозрачные                                     | Не проходят<br>через мембрану                     |
| <10 <sup>-10</sup>                  | Истинный раствор<br>НМС                     | Прозрачны                                      | Проходят чер <u>е</u> з<br>мембрану               |

#### Классификация по степени дисперсности

Грубодисперсные (d= 10<sup>-3</sup>-10<sup>-5</sup> м) к ним принадлежат грубые суспензии, эмульсии, порошки. средней дисперсности  $(d=10^{-5}-10^{-7} \text{ M})$ 

к ним принадлежат тонкие суспензии, дым, пористые тела.

высокодисперсные  $(d=10^{-7}-10^{-9} \text{ M})$ это коллоидные системы.

#### Примеры систем с различной степенью дисперсности

| Дисперсная система         | $\lg D$ |
|----------------------------|---------|
| Порошок какао              | 3.7-4.0 |
| Песчаные грунты            | < 4.3   |
| Эритроциты крови человека  | 5.2     |
| Порошок титановых белил    | 6.3     |
| Водяной туман              | 6.3     |
| Гидрозоль золота (синий)   | 7.3     |
| Дым (древесный уголь)      | 7.5     |
| Гидрозоль золота (красный) | 7.7     |
| Вирус ящура                | 8.0     |
| Тонкие поры угля           | 8–9     |





#### ФРЕЙНДЛИХ (Freundlich), Герберт Макс 1880 - 1941

Герберт Макс Фрейндлих – немецкий физико-химик. Родился в Берлине.

Учился в Мюнхенском и Лейпцигском университетах (доктор философии, 1908). Преподавал в Лейпцигском университете, в 1911-1916 гг. в Высшей технической школе Брауншвейга, с 1916 г. работал в Институте физической химии и электрохимии кайзера Вильгельма в Берлине. С 1923 г. профессор Берлинского университета, с 1925 г. – Высшей технической школы в Берлине.

В 1933 г. эмигрировал в Англию, где преподавал в Университетском колледже в Лондоне. С 1938 г. профессор университета Миннесоты (США).

Основные работы относятся к коллоидной химии. Исследовал (с 1911) коагуляцию и устойчивость коллоидных растворов. Установил (1920-1922) зависимость адсорбции от температуры, подтвердил справедливость эмпирического уравнения изотермы адсорбции, которое вывел в 1888 г. голландский химик И. М. ван Бемелен (т.н. изотерма адсорбции Фрейндлиха). Открыл (1930) коллоидные системы, способные к обратимому гелеобразованию при постоянной температуре и покое. Установил способность твёрдообразных структур обратимо разрушаться (разжижаться) при механическом воздействии и назвал это явление тиксотропией. Использовал эффект тиксотропии в технологии силикатов. Занимался коллоиднохимическими проблемами, связанными с биологией и медициной.

# □ По наличию взаимодействия между частицами дисперсной фазы:

#### Свободнодисперсные системы: лиозоли, суспензии, эмульсии, аэрозоли.

Частицы дисперсной фазы не Частицы дисперсной фазы связаны между собой и могут имеют свободно перемещаться в объеме устойчивые связи, образуя дисперсионной среды.

#### Связнодисперсные системы: студни, пористые капиллярные системы

собой между сплошную структуру (сетку каркас), внутри которой заключена дисперсионная среда

### Классификация дисперсных систем

#### по концентрации

В коллоидной химии под концентрацией чаще всего понимают число кинетических единиц (частиц) в единице объема (v), иногда вводят понятие грамм-частичной концентрации (v/N)

**Свободнодисперсные растворы** – относительно разбавленные растворы, в которых частицы практически не взаимодействуют друг с другом, и доминирует взаимодействие частиц с дисперсионной средой.

**Связнодисперсные растворы** – достаточно концентрированные растворы, в которых частицы взаимодействуют друг с другом и образуют сетку.

**Порог перколяции** – концентрация частиц, при которой образуется связная сетка.



## КЛАССИФИКАЦИЯ ДИСПЕРСНЫХ СИСТЕМ

# По агрегатному состоянию дисперсной фазы и дисперсной среды

| Дисперсионная | Дисперсные системы для дисперсных фаз |               |                 |
|---------------|---------------------------------------|---------------|-----------------|
| среда         | твердых                               | жидких        | газовых         |
| Жидкая        | Т/Ж                                   | Ж/Ж           | Г/Ж             |
|               | золи, суспензии,                      | эмульсии,     | газовые         |
|               | гели, пасты                           | кремы         | эмульсии, пены  |
| Твердая       | T/T                                   | Ж/Т           | <u>Γ/Τ</u>      |
|               | твердые золи,                         | твердые       | твердые пены,   |
|               | сплавы                                | эмульсии,     | пористые тела   |
|               |                                       | пористые тела |                 |
| Газовая       | $\Gamma/\Gamma$                       | Ж/Г           | $\Gamma/\Gamma$ |
| (аэрозоли)    | дым, пыль,                            | туман, капли  | газовые         |
|               | порошки                               |               | выбросы,        |
|               |                                       |               | флуктуации      |
|               |                                       |               | плотности,      |
|               |                                       |               | клатраты        |



# По агрегатному состоянию ДФ и ДС

| ДФ      | дс       | Обозначение<br>Д системы | Название                       | Примеры                                   |
|---------|----------|--------------------------|--------------------------------|-------------------------------------------|
| Твёрдая | Газ      | Т/Г                      | Дымы, пыли<br>(аэрозоли)       | Табачный дым                              |
| Жидкая  | Газ      | ж/г                      | Туманы<br>(аэрозоли)           | Туман, гексорал,<br>биопарокс             |
| Твёрдая | Жидкая   | Т/Ж                      | Суспензии, коллоидные растворы | Прокариот,<br>коллоиды<br>металлов в воде |
| Жидкая  | Жидкая   | ж/ж                      | Эмульсии                       | Майонез, молоко                           |
| Газ     | Жидкость | Г/Ж                      | Пена                           | Кислородный<br>коктейль <sup>19</sup>     |

| №<br>типа<br>Систе<br>мы | Дисперсная<br>Фаза | Дисперсионная<br>среда | Обознач<br>ение<br>Систем<br>ы | Тип системы                                                  | Некоторые<br>Примеры                                                    |
|--------------------------|--------------------|------------------------|--------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
| 1                        | Твердая            | Жидкая                 | Т/Ж                            | Золи, суспензии                                              | Природные воды. Золи –металлов в воде, бактерии                         |
| 2                        | Жидкая             | Жидкая                 | Ж/Ж                            | Эмульсии                                                     | Молоко, смазки, кремы, нефть, кровь                                     |
| 3                        | Газообразн<br>ая   | Жидкая                 | Г/Ж                            | Газовые эмульсии, пены                                       | Мыльная пена                                                            |
| 4                        | Твердая            | Твердая                | T/T                            | Твердые коллоидные растворы                                  | Минералы. Металлы и сплавы в поликристаллическом состоянии. Бетоны.     |
| 5                        | Жидкая             | Твердая                | Ж/Т                            | Пористые тела, капиллярные системы, гели                     | Пористые тела заполненные жидкостью. Влажные грунты. Некоторые минералы |
| 6                        | Газообразн<br>ая   | Твердая                | Г/Т                            | Пористые тела, капиллярные системы, ксерогели, твердые пены. | Активированный уголь. Силикагель. Пемза. Пенополиуретан (жемчуг)        |
| 7                        | Твердая            | Газообразная           | Т/Γ                            | Аэрозоли<br>(пыли, дымы)                                     | Порошки. Космическая пыль. Сигнальный дым.<br>Табачный дым              |
| 8                        | Жидкая             | Газообразная           | Ж/Г                            | Аэрозоли<br>(туманы)                                         | Туман, кучевые облака, тучи                                             |
| 9                        | Газообразн<br>ая   | Газообразная           | Γ/Γ                            | Системы с флуктуациями плотности                             | Атмосфера Земли. Смеси некоторых газов при низких температурах          |

## МЕТОДЫ ПОЛУЧЕНИЯ ДИСПЕРСНЫХ СИСТЕМ

# А) **Диспергирование** измельчение, дробление, распыление; механическое, ультразвуковое, электродуговое



# B) **Конденсация** агрегация, концентрирование, кристаллизация физическая, химическая



### Метод пептизации

Пептизация – метод, основанный на переводе в коллоидный раствор осадков, первичные размеры которых уже имеют размеры высокодисперсных систем.

Суть метода: свежевыпавший рыхлый осадок переводят в золь путем обработки пептизаторами (растворами электролитов, ПАВ, растворителем).

#### Методы очистки дисперсных систем

Низкомолекулярные примеси (чужеродные электролиты) разрушают коллоидные системы.

*Диализ* — отделение золей от низкомолекулярных примесей с помощью полупроницаемой мембраны.

Электродиализ – диализ, ускоренный внешним электрическим полем.

Ультрафильтрация – электродиализ под давлением (гемодиализ).

#### МЕТОДЫ ОЧИСТКИ ДИСПЕРСНЫХ СИСТЕМ

**Фильтрация** — способ разделения, основанный на пропускании смеси через пористую пленку.

**Диализ (электродиализ)**— способ удаления из дисперсных систем и коллоидных растворов низкомолекулярных соединений с помощью мембран.

**Ультрафильтрация** — продавливание разделяемой смеси через тонкие фильтры

Седиментация — разделение дисперсий в поле тяжести

# Литература

Кудряшева, Н. С. Физическая и коллоидная химия [Электронный ресурс]: учебник и практикум для СПО / Н. С. Кудряшева, Л. Г. Бондарева. - 2-е изд., перераб. и доп. - М.: Юрайт, 2018. - 379 с. - (Серия: Профессиональное образование). - URL: www.biblio-online.ru

Видео: <a href="https://www.youtube.com/watch?v=gNttE">https://www.youtube.com/watch?v=gNttE</a> u8xaw

## Контрольные вопросы:

- 1. Дайте определение и назовите объекты исследования коллоидной химии.
- 2. Охарактеризуйте значение коллоидной химии для развития промышленности, науки, охраны окружающей среды.
- 3. Что такое коллоидное состояние вещества, и каковы его признаки?
- 4. Как Вы думаете, какой из признаков дисперсных систем является более универсальным: гетерогенность или дисперсность? Почему?
- 5. Продолжите ряд примеров материи в коллоидном состоянии: типографская краска, туман, паутина, почва, микроорганизмы,...
- 6. Какова связь коллоидной химии с другими науками?
- 7. Приведите примеры использования коллоидно-химических процессов в технологии продукции общественного питания.