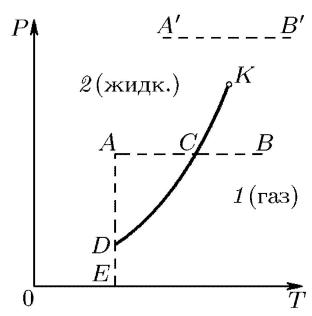
ЯВЛЕ-НИЯ ПЕРЕ-НОСА

Проверочная работа

Определить удельную теплоемкость водяного пара вдоль кривой равновесия жидкости и ее насыщенного пара (т. е. для процесса, при котором жидкость все время находится в равновесии со своим паром) при изменении температуры вблизи точки кипения при нормальном давлении. Пар считать идеальным газом. Удельная теплота

парообразования воды L.



Проверочная работа

Определить удельную теплоемкость водяного пара вдоль кривой равновесия жидкости и ее насыщенного пара (т. е. для процесса, при котором жидкость все время находится в равновесии со своим паром) при изменении температуры вблизи точки кипения при нормальном давлении.

$$\left. \delta \mathcal{Q} \right|_{\gamma} = \frac{\delta \mathcal{Q}}{dT} \bigg|_{p} dT + \frac{\delta \mathcal{Q}}{\partial p} dp_{\gamma} = \left(c_{p} + \frac{\delta \mathcal{Q}}{\partial p} \frac{dp}{dT} \right|_{\gamma} \right) dT =$$

$$= \left(\left. c_p + T \frac{\partial S}{\partial p} \right|_T \frac{\partial p}{\partial T} \right|_{\gamma} dT = \left(\frac{i+2}{2M} R - T \frac{\partial V}{\partial T} \right|_p \frac{L}{T v_z} dT$$

Потенциал Гиббса

$$G = F + pV; \quad dG = Vdp - SdT; \quad G(p,T)$$

$$dG = \frac{\partial G}{\partial p}\Big|_{T} dp + \frac{\partial G}{\partial T}\Big|_{p} dT;$$

$$\frac{\partial G}{\partial p}\Big|_{T} = V, \quad \frac{\partial G}{\partial T}\Big|_{p} = -S;$$

$$\frac{\partial S}{\partial p}\Big|_{T} = \frac{\partial}{\partial p} \left(-\frac{\partial G}{\partial T}\Big|_{p}\right)\Big|_{T} = -\frac{\partial}{\partial T} \left(\frac{\partial G}{\partial p}\Big|_{T}\right)\Big|_{p} = -\frac{\partial V}{\partial T}\Big|_{p}$$

$$c = \frac{dQ}{dT}\bigg|_{\gamma} = \frac{4R}{M} - \frac{dv_{z}}{dT}\bigg|_{p} \frac{L}{v_{z}}$$

$$V = v_{z} = \frac{RT}{p} \implies \left. \frac{dV}{dT} \right|_{p} = \frac{R}{p} = \frac{v_{z}}{T}$$

$$c \equiv \frac{4R}{M} - \frac{L}{T}$$

Разбор домашнего задания

6.339. Показать, что для вещества, подчиняющегося уравнению Ван-дер-Ваальса, в критическом состоянии справедливы соотношения $V_{MED} = 3b$, $p_{ED} = \frac{a}{27b^2}$, $T_{ED} = \frac{8a}{27Rb}$ $p_{ED}V_{MED} = \frac{3}{8}RT_{ED}$.

$$\left(p + \frac{a}{V_{\mu}^{2}}\right)\left(V_{\mu} - b\right) = RT, \quad p = \frac{RT}{V_{\mu} - b} - \frac{a}{V_{\mu}^{2}}$$

$$p' = -\frac{RT}{\left(V_{\mu} - b\right)^{2}} + \frac{2a}{V_{\mu}^{3}} = 0 \quad \Rightarrow \quad \frac{RT}{\left(V_{\mu} - b\right)^{2}} = \frac{2a}{V_{\mu}^{3}}$$

$$p' = -\frac{RT}{(V_{\mu} - b)^{2}} + \frac{2a}{V_{\mu}^{3}} = 0 \implies \frac{RT}{(V_{\mu} - b)^{2}} = \frac{2a}{V_{\mu}^{3}}$$

$$p'' = \frac{2RT}{(V_{\mu} - b)^{3}} - \frac{6a}{V_{\mu}^{4}} = 0 \implies \frac{RT}{(V_{\mu} - b)^{3}} = \frac{3a}{V_{\mu}^{4}}$$

$$V_{\kappa p} - b = \frac{2}{3}V_{\kappa p} \implies V_{\kappa p} = 3b$$

$$\frac{RT_{\kappa p}}{\left(V_{\kappa p}-b\right)^{2}} = \frac{2a}{V_{\kappa p}^{3}} \implies T_{\kappa p} = \frac{2a}{R} \frac{\left(V_{\kappa p}-b\right)^{2}}{V_{\kappa p}^{3}} \bigg|_{V_{\kappa p}=3b} = \frac{8a}{27R}$$

$$p_{\kappa p} = \frac{RT_{\kappa p}}{V_{\kappa p} - b} - \frac{a}{V_{\kappa p}^2} = \frac{8a}{27 \cdot 2b^2} - \frac{a}{9b^2} = \frac{a}{27b^2}$$

$$p_{\kappa p}V_{\kappa p} = \frac{a}{27b^2} \cdot 3b = \frac{a}{9b} = \frac{8}{3}T_{\kappa p}$$

Разбор домашнего задания

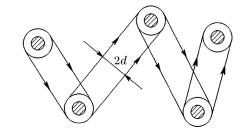
6.340. Вычислить постоянные Ван-дер-Ваальса для углекислого газа, если его критическая температура $T_{\rm kp}$ =304 К и критическое давление $p_{\rm kp}$ =73 атм.

$$p_{\rm xp} = \frac{a}{27b^2}, \quad T_{\rm xp} = \frac{8a}{27Rb}$$

$$T_{\kappa p}: p_{\kappa p} = \frac{8b}{R} \implies b = \frac{RT_{\kappa p}}{8p_{\kappa p}}$$

$$a = 27 p_{\kappa p} b^2 \implies a = 27 p_{\kappa p} \left(\frac{RT_{\kappa p}}{8p_{\kappa p}}\right)^2 = \frac{27(RT_{\kappa p})^2}{64p_{\kappa p}}$$

Модель твердых шаров



$$\mathbf{v}_{omh} = \mathbf{v} - \mathbf{v}_{i}, \quad \mathbf{v}_{omh}^{2} = (\mathbf{v} - \mathbf{v}_{i})^{2} = \mathbf{v}^{2} + \mathbf{v}_{i}^{2} - 2\mathbf{v}\mathbf{v}_{i}$$

$$\left\langle \mathbf{v}_{omh}^{2} \right\rangle = \left\langle (\mathbf{v} - \mathbf{v}_{i})^{2} \right\rangle = \left\langle \mathbf{v}^{2} \right\rangle + \left\langle \mathbf{v}_{i}^{2} \right\rangle - 2\left\langle \mathbf{v}\mathbf{v}_{i} \right\rangle$$

$$\left\langle \mathbf{v}\mathbf{v}_{i} \right\rangle = \left\langle \mathbf{v} \right\rangle \left\langle \mathbf{v}_{i} \right\rangle = 0$$

$$\left\langle \mathbf{v}^{2} \right\rangle = \left\langle \mathbf{v}_{kg}^{2} \right\rangle = \mathbf{v}^{2} = \frac{3kT}{m} = \frac{3RT}{M}$$

$$\left\langle \mathbf{v}_{omh}^{2} \right\rangle = 2\left\langle \mathbf{v}_{kg}^{2} \right\rangle \implies \left\langle \mathbf{v}_{omh} \right\rangle = \sqrt{2}\left\langle \mathbf{v} \right\rangle = 4\sqrt{\frac{kT}{\pi m}} = 4\sqrt{\frac{RT}{\pi M}}$$

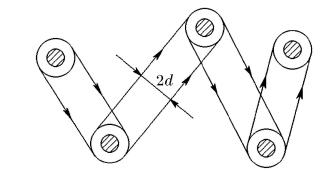
Средние скорости при 0°C

- Водород 1700 м/с
- A30T 455 M/C
- Кислород 425 м/с.

Длина свободного пробега

$$d \ll \lambda$$
, $\sigma = \pi d^2$

$$Zdt = n\sigma v_{omh} dt, \Rightarrow Z = n\sigma v_{omh}$$



$$\lambda = \frac{v}{Z} = \frac{1}{\sqrt{2}n\sigma}$$

$$Z_{Ny} = 8.6 \cdot 10^9$$
 ⁻¹, $M_{Ny} = 6 \cdot 10^{-8}$

- 6.201. Идеальный газ совершил процесс, в результате которого его давление возросло в *n* раз. Как и во сколько раз изменились средняя длина свободного пробега и число столкновений каждой молекулы в единицу времени, если процесс;
 - а) изохорический; б) изотермический?

6.201. Идеальный газ совершил процесс, в результате которого его давление возросло в *n* раз. Как и во сколько раз изменились средняя длина свободного пробега и число столкновений каждой молекулы в единицу времени, если процесс:

а) изохорический; б) изотермический?

$$n = \frac{p}{kT} \implies \lambda = \frac{kT}{\sqrt{2}\sigma p}$$

$$a) \quad \lambda = \lambda_0; \quad \delta) \quad \lambda = \lambda_0 / n$$

$$Z = 4n\sigma\sqrt{\frac{kT}{\pi m}} = 4\sigma\frac{p}{kT}\sqrt{\frac{kT}{\pi m}} = \frac{4\sigma}{\sqrt{k\pi m}}\frac{p}{\sqrt{T}}$$

a)
$$Z = Z_0 \sqrt{n}$$
; δ) $Z = Z_0 n$

Поток физической величины

$$d\Phi_{G} = \frac{dVg}{dt} = \frac{dSvdt\cos\theta g}{dt} = \mathbf{dS} \cdot \mathbf{j}_{G}$$

$$\mathbf{dS} = dS\mathbf{n}, \quad \mathbf{j}_{G} = g\mathbf{v}$$

$$\Phi_{G} = I_{G} = \int_{S} \mathbf{j}_{G} \mathbf{dS}$$

$$\int_{\partial V} \mathbf{j}_{G} \mathbf{dS} = \int_{V} div\mathbf{j}_{G} \mathbf{dS} \left(div\mathbf{j} = \frac{\partial j_{x}}{\partial x} + \frac{\partial j_{y}}{\partial y} + \frac{\partial j_{z}}{\partial z}\right)$$

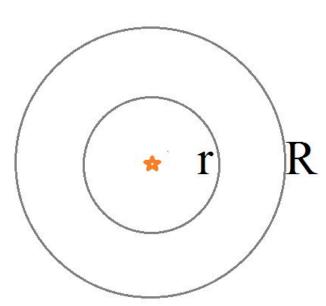
Непрерывность потока

$$\Phi_{E} = P = \int_{S_{1}} \mathbf{j}_{E} d\mathbf{S} = \int_{S_{2}} \mathbf{j}_{E} d\mathbf{S}$$

$$\int_{S_{1}} (j_{E})_{n} dS = \int_{S_{2}} (j_{E})_{n} dS$$

$$j_{E}(r) \cdot 4\pi r^{2} = j_{E}(R) \cdot 4\pi R^{2}$$

$$j_{E}(R) = \frac{j_{E}(r) r^{2}}{R^{2}}$$



Рассеяние молекулярного пучка

$$P(x < l < x + dx) = \beta dx = \frac{dx}{\lambda}$$

$$dI(x) = -I(x)\frac{dx}{\lambda} \implies d\left(\ln I(x)\right) = -\frac{dx}{\lambda}$$

$$I(x) = I(0)\exp\left(-\frac{x}{\lambda}\right) = I(0)\exp\left(-\beta x\right)$$

Пусть βdx — вероятность того, что частица испытает столкновение на пути dx. Найти

- а)вероятность того, что столкновение не произойдет на пути длиной l;
- б)длину свободного пробега.

Пусть βdx — вероятность того, что частица испытает столкновение на пути dx. Найти

- а)вероятность того, что столкновение не произойдет на пути длиной l;
- б)длину свободного пробега.

a)
$$I(x) = I(0) \exp(-\beta x)$$

 $P(x \le l) = I(x) / I(0) = \exp(-\beta l)$

$$\delta = \int_{0}^{+\infty} x \exp(-\beta x) dx = \frac{1}{\beta} \int_{0}^{+\infty} \exp(-\beta x) dx$$

$$\int_{0}^{+\infty} \exp(-\beta x) dx = \int_{0}^{+\infty} \exp(-\beta x) dx$$

$$du = \exp(-\beta x) dx, \quad u = -\frac{1}{\beta} \exp(-\beta x)$$

$$v = x, \qquad dv = dx$$

$$\lambda = \frac{1}{\beta} \int_{0}^{+\infty} \exp(-\beta x) dx$$

Рассеяние молекулярного пучка

$$P(t < s < t + dt) = \alpha dt = \frac{dt}{\tau}$$

$$dI(t) = -I(t)\frac{dt}{\tau} \implies d\left(\ln I(t)\right) = -\frac{dt}{\tau}$$

$$I(t) = I(0) \exp\left(-\frac{t}{\tau}\right) = I(0) \exp\left(-\alpha t\right)$$

Найти связь между

- а) λ и τ ;
- б) α и β.

Найти связь между

- а) λиτ;
- б) α и β.

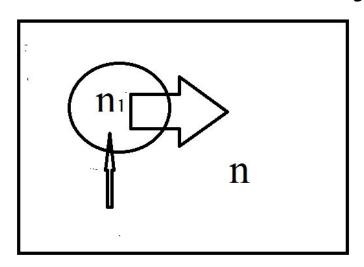
$$I_t(t + \Delta t) \equiv I_t(t) \exp\left(-\frac{\mathbb{Z}t}{\tau}\right) = I_x(x) \exp\left(-\frac{\Delta x}{\lambda}\right) \equiv I_x(x + \Delta x)$$

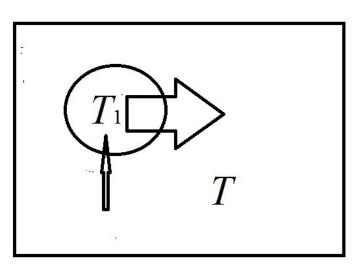
$$\frac{\Delta t}{\tau} = \frac{\Delta x}{\lambda} \quad \Rightarrow \quad \frac{\lambda}{\tau} = \frac{\Delta x}{\Delta t} = v$$

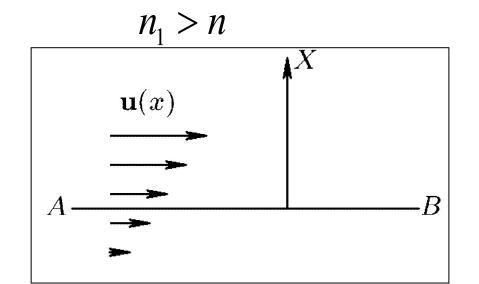
$$I_t(t + \Delta t) \equiv I_t(t) \exp(-\alpha \Delta t) = I_x(x) \exp(-\beta \Delta x) \equiv I_x(x + \Delta x)$$

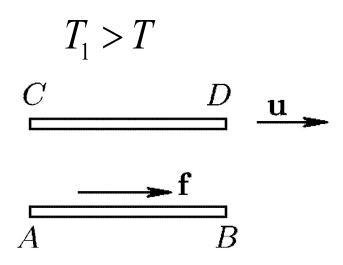
$$\alpha \Delta t = \beta \Delta x \quad \Rightarrow \quad \frac{\alpha}{\beta} = \frac{\Delta x}{\Delta t} = v$$

Явления переноса - следствия молекулярного хаоса









Общее уравнение переноса

$$\mathbf{j}_{G} = -D_{G}\nabla g$$
, $\nabla g = \mathbf{i}\frac{\partial g}{\partial x} + \mathbf{j}\frac{\partial g}{\partial y} + \mathbf{k}\frac{\partial g}{\partial z}$

$$\mathbf{j}_N = -\mathbf{k} \partial \mathbf{k} \partial \mathbf{k} \partial \mathbf{k} \partial \mathbf{k}$$

$$\mathbf{j}_{Q} = -\kappa \nabla \mathcal{I}$$
акон Фурье

вакон И**ф**ымоча для вязкости

Размерность коэффициентов переноса

$$\left[\mathcal{D} \right] c = \frac{\left[j_N \right]}{\left[\nabla \mathcal{M} \right]} = \frac{\mathcal{M}^{-3} \cdot \mathcal{M} / c}{-4} = 2$$

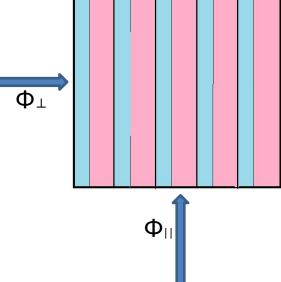
$$[\kappa] = \frac{[j_Q]}{[\nabla \mathbb{K}]} = \frac{\mathcal{A}\mathcal{H} \cdot \mathcal{M}/c}{\mathcal{K} \cdot \mathcal{K}} = \frac{\mathcal{A}\mathcal{H} \cdot \mathcal{M}^2}{\mathcal{K} \cdot \mathcal{K} \cdot \mathcal{K}}$$

$$[\eta] = \frac{[F]}{[Sw]} = \frac{H}{c} = \frac{H}{3}$$

Проверочная работа

262. Кубик сделан из чередующихся пластинок разной толщины и разной теплопроводности. Толщина пластинок одного типа равна b_1 , теплопроводность материала, из которого они сделаны, равна ж1, число всех пластинок этого типа n_1 . Соответствующие величины для пластинок второго типа равны b_2 , κ_2 и n_2 . Найти теплопроводности материала кубика вдоль пластинок и и перпендикулярно к ним и ..

Какая из этих теплопроводностей больше?



$$=b_{1}\sum_{i=1}^{n_{1}}\frac{j_{\perp}}{\kappa_{1}}+b_{2}\sum_{j=1}^{n_{2}}\frac{j_{\perp}}{\kappa_{2}}=n_{1}b_{1}\frac{j_{\perp}}{\kappa_{1}}+n_{2}b_{2}\frac{j_{\perp}}{\kappa_{2}}=j_{\perp}\left(\frac{n_{1}b_{1}}{\kappa_{1}}+\frac{n_{2}b_{2}}{\kappa_{2}}\right)$$

$$\frac{1}{\kappa_{\perp}} = \frac{1}{l} \left(\frac{n_1 b_1}{\kappa_1} + \frac{n_2 b_2}{\kappa_2} \right)$$

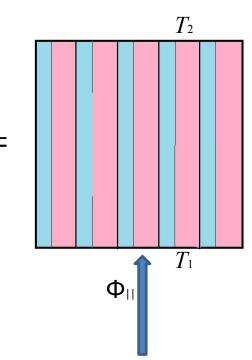
$$\Phi_{\mathbb{N}} = Sj_{\mathbb{N}} = l^{2}\kappa_{\mathbb{N}} \frac{T_{2} - T_{1}}{l}, \quad \kappa_{\mathbb{N}} = \frac{\Phi_{\mathbb{N}}}{l(T_{2} - T)_{1}}$$

$$\Phi_{\mathbb{N}} = \sum_{i=1}^{n_1} lb_1 j_i + \sum_{m=1}^{n_2} lb_2 j_m = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1} j_i + b_2 \sum_{m=1}^{n_1} j_m \right) = l \left(b_1 \sum_{i=1}^{n_1}$$

$$= l \left(b_1 n_1 k_1 \frac{T_2 - T_1}{l} + b_2 n_2 k_2 \frac{T_2 - T_1}{l} \right) =$$

$$\kappa_{\mathbb{N}} = \frac{1}{I} \left(b_1 n_1 k_1 + b_2 n_2 k_2 \right)$$

 $= (T_2 - T_1)(b_1n_1k_1 + b_2n_2k_2)$



Неожиданная встреча

$$\frac{l}{\kappa_{\perp}} = \frac{n_1 b_1}{\kappa_1} + \frac{n_2 b_2}{\kappa_2} = \sum_{i=1}^{N} \frac{b_i}{\kappa_i}$$

$$l\kappa_{\mathbb{N}} = b_1 n_1 k_1 + b_2 n_2 k_2 = \sum_{i=1}^{N} b_i n_i k_i$$

Операции векторного поля и символический метод

$$\mathbf{k} = \mathbf{i}k_x + \mathbf{j}k_y + \mathbf{k}k_z$$

$$\nabla = \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}$$

$$\varphi \mathbf{k} = \mathbf{i} k_x \varphi + \mathbf{j} k_y \varphi + \mathbf{k} k_z \varphi$$

$$\nabla \varphi = \mathbf{i} \frac{\partial \varphi}{\partial x} + \mathbf{j} \frac{\partial \varphi}{\partial y} + \mathbf{k} \frac{\partial \varphi}{\partial z} = grad\varphi$$

Дивергенция и ротор

$$\mathbf{a} \cdot \mathbf{k} = k_x a_x + k_y a_y + k_z a_z$$

$$div \mathbf{a} = \nabla \cdot \mathbf{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$$

$$\mathbf{k} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ k_x & k_y & k_z \\ a_x & a_y & a_z \end{vmatrix} \qquad rot\mathbf{a} = \nabla \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix}$$

Оператор Лапласа

$$\mathbf{k} \cdot \varphi \mathbf{k} = \mathbf{k} \cdot \left(\mathbf{i} k_x \varphi + \mathbf{j} k_y \varphi + \mathbf{k} k_z \varphi \right) = k_x^2 \varphi + k_y^2 \varphi + k_z^2 \varphi$$

$$div(\nabla\varphi) = \nabla \cdot (\nabla\varphi) = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$$

2.198. Зазор между двумя концентрическими сферами заполнен однородным изотропным веществом. Радиусы сфер равны: $r_1 = 10,0$ см и $r_2 = 20,0$ см. Поверхность внутренней сферы поддерживается при температуре $T_1 = 400,0 \text{K}$, поверхность внешней сферы — при температуре $T_2 = 300.0 \text{K}$. В этих условиях от внутренней сферы к внешней течет установившийся тепловой поток q=1,000 кВт. Считая теплопроводность и вещества в зазоре не зависящей от температуры, определить: а) значение ж. б) температуру в зазоре T(r) как функцию расстояния

r от центра сфер.

$$j_{Q}(r) = \frac{j_{Q}(r_{1})r_{1}^{2}}{r^{2}} = \frac{q}{4\pi r^{2}}$$

$$\nabla T = -\frac{q}{4\pi\kappa r^2}$$

$$\begin{cases} \frac{\partial T}{\partial r} = -\frac{q}{4\pi\kappa r^2}, \\ T(r_1) = T_1, \quad T(r_2) = T_2 \end{cases} \Rightarrow \begin{cases} T = \frac{q}{4\pi\kappa r} + C, \\ T(r_1) = T_1, \quad T(r_2) = T_2 \end{cases}$$

$$T_1 = \frac{q}{4\pi\kappa r_1} + C \implies C = T_1 - \frac{q}{4\pi\kappa r_1}$$

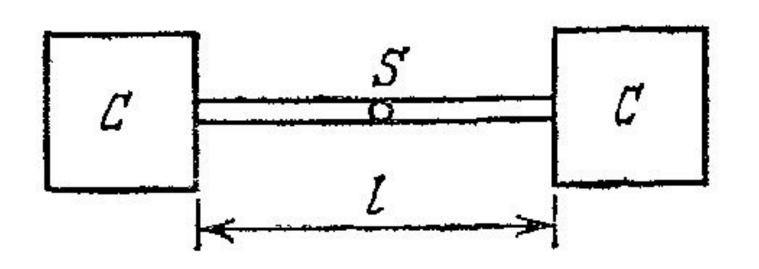
$$T_1 = \frac{q}{4\pi\kappa r_1} + C \implies C = T_1 - \frac{q}{4\pi\kappa r_1}$$

$$T_2 = \frac{q}{4\pi\kappa r_2} + T_1 - \frac{q}{4\pi\kappa r_1} \implies k = \frac{q}{4\pi (T_1 - T_2)} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

$$T = T_1 - \frac{q}{4\pi\kappa} \left(\frac{1}{r_1} - \frac{1}{r} \right) = T_1 - \frac{\left(T_1 - T_2 \right) r_1 r_2}{r_2 - r_1} \left(\frac{1}{r_1} - \frac{1}{r} \right)$$

2.199. Два тела, теплоемкость каждого из которых равна $C=500~\rm{Дж/K}$, соединены стержнем длины $t=40,0~\rm{cm}$ с площадью поперечного сечения $S=3,00~\rm{cm}^2$ (рис. 2.31). Теплопроводность стержня не зависит от температуры и равна $\varkappa=20,0~\rm{Bt/(m\cdot K)}$. Тела и стержень образуют теплоизолированную систему. В начальный момент температуры тел отличаются друг от друга. Найти время τ , по истечении которого разность температур тел уменьшится в $\eta=2$ раза. Теплоемкостью стержня и неоднородностью

температуры в пределах каждого из тел пренебречь.



$$\mathbf{j}_{Q} = -\kappa \nabla T \implies \frac{dQ}{dt} = |I| = \kappa S \frac{\Delta T}{l}$$

$$\frac{dT_{1}}{dt} = -\kappa S \frac{T_{1} - T_{2}}{cl}, \quad \frac{dT_{2}}{dt} = \kappa S \frac{T_{1} - T_{2}}{cl} \implies \frac{d\left(T_{1} - T_{2}\right)}{dt} = -2\kappa S \frac{T_{1} - T_{2}}{cl}$$

$$\Rightarrow \frac{d\Delta T}{dt} = -2\kappa S \frac{\Delta T}{cl} \implies \frac{d\left(\ln \Delta T\right)}{dt} = -\frac{2\kappa S}{cl}$$

$$\Delta T = \Delta T_{0} \exp\left(-\frac{2\kappa S}{cl}t\right)$$

$$\exp\left(-\frac{2\kappa S}{cl}t_{1/2}\right) = \frac{1}{2}$$
$$t_{1/2} = \frac{cl}{2\kappa S}\ln 2$$

2.208. Один из способов измерения вязкости газов заключается в наблюдении скорости затухания крутильных колебаний горизонтального диска, подвещенного на тонкой упругой нити над таким же неподвижным диском (рис. 2.32). Получить формулу, связывающую вязкость в газа, нахолящегося межлу

вязкость η газа, находящегося между дисками, с массой диска m, радиусом диска R, зазором a и коэффициентом затухания колебаний β . Считать, что трения в подвесе нет.

2.208. Один из способов измерения вязкости газов заключается в наблюдении скорости затухания крутильных колебаний горизонтального диска, подвещенного на тонкой упругой нити над таким же неподвижным диском (рис. 2.32). Получить формулу, связывающую

лисками, с мас

вязкость η газа, находящегося между дисками, с массой диска m, радиусом диска R, зазором a и коэффициентом затухания колебаний β . Считать, что трения в подвесе нет.

$$N = \int_{0}^{R} dF(r)r = \int_{0}^{R} \frac{dF(r)}{dS} r dS = \int_{0}^{R} \eta \frac{v}{a} r 2\pi r dr \bigg|_{v=\omega r} =$$

$$=\frac{2\pi\eta\omega}{a}\int_{0}^{R}r^{3}dr=\frac{\pi\eta R^{4}}{2a}\omega$$

$$\frac{mR^2}{2} \varphi + \frac{\pi \eta R^4}{2a} \omega + G\varphi = 0$$

$$\beta = \frac{\pi \eta R^4}{2a} : \left(2\frac{mR^2}{2}\right) = \frac{\pi \eta R^2}{2ma}$$

$$\eta = \frac{2ma}{\pi R^2} \beta$$

Вычисление коэффициентов переноса

$$\mathbf{j}_{G} = -D_{G} \nabla g$$

$$\mathbf{j}_{G} = \mathbf{j}_{G}^{+} - \mathbf{j}_{G}^{-1} = \frac{\langle v \rangle}{6} (g(-\lambda) - g(\lambda)) = \frac{\langle v \rangle}{\sqrt{g}}$$

$$= \frac{\langle v \rangle}{6} \left[(g(0) - \lambda g'(0)) - (g(0) + \lambda g'(0)) \right] = -\frac{\langle v \rangle \lambda}{3} \nabla g$$

$$D_{G} = \frac{\langle v \rangle \lambda}{3}$$

Коэффициенты диффузии, вязкости и теплопроводности

$$\mathbf{j}_N = -\mathbf{k} \partial \mathbf{k}$$
ан Фик d D

$$, \qquad = \frac{\langle v \rangle \lambda}{3}$$

$$, \quad \eta = \rho \quad = \rho \frac{\langle v \rangle \lambda}{3}$$

$$\mathbf{j}_{Q} = -\kappa \nabla \mathcal{I}$$
акон Фурье

$$c, \quad \kappa = {}_{V}\rho \frac{\langle v \rangle \lambda}{3}$$

$$\kappa = c_V \eta = c_V \rho D = c_V \rho \frac{\langle v \rangle \lambda}{3}$$

6.213. Гелий при нормальных условиях заполняет пространство между двумя длинными коаксиальными цилиндрами. Средний радиус цилиндров R, зазор между ними ΔR , причем $\Delta R \ll R$. Внутренний цилиндр неподвижен, а внешний вращают с небольшой угловой скоростью ω . Найти момент сил трения, действующих на единицу длины внутреннего цилиндра. До какого значения надо уменьшить давление гелия (не меняя температуры), чтобы искомый момент уменьшился в n=10 раз,

если $\Delta R = 6$ мм?

6.213. Гелий при нормальных условиях заполняет пространство между двумя длинными коаксиальными цилиндрами. Средний радиус цилиндров R, зазор между ними ΔR , причем $\Delta R \ll R$. Внутренний цилиндр неподвижен, а внешний вращают с небольшой угловой скоростью ω . Найти момент сил трения, действующих на единицу длины внутреннего цилиндра. До какого значения надо уменьшить давление гелия (не меняя температуры), чтобы искомый момент уменьшился в n=10 раз, если $\Delta R = 6$ мм?

$$N = FR = \frac{F}{S}RS = \left(\eta \frac{\omega R}{\Delta R}\right)R(2\pi Rl) = \frac{2\pi\eta\omega lR^3}{\Delta R}$$
$$\frac{N}{l} = \frac{2\pi\eta\omega R^3}{\Delta R}$$

$$\eta = \rho D = \rho \frac{\langle v \rangle \lambda}{3}$$

$$p = \frac{\rho}{M} kT \implies \rho = \frac{Mp}{kT}$$

$$\eta = \rho D = \frac{Mp}{kT} \frac{\langle v \rangle \lambda}{3}$$