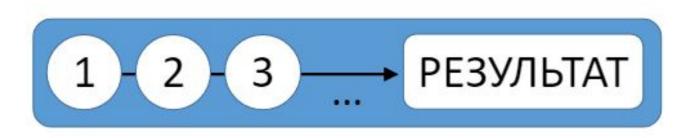
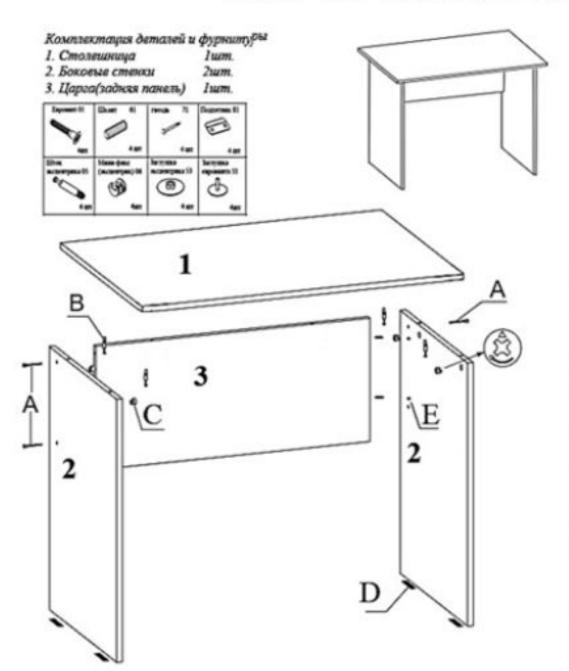
Алгоритм


АЛГОРИТМ НЕ РОСКОШЬ, А СРЕДСТВО ДОСТИЖЕНИЯ ЦЕЛИ. ◎

Этапы (шаги) решения задач


Каждый человек в повседневной жизни, в учёбе или на работе решает огромное количество задач самой разнообразной сложности. Сложные задачи требуют длительных размышлений для нахождения решения, простые и привычные задачи человек решает не задумываясь, автоматически.

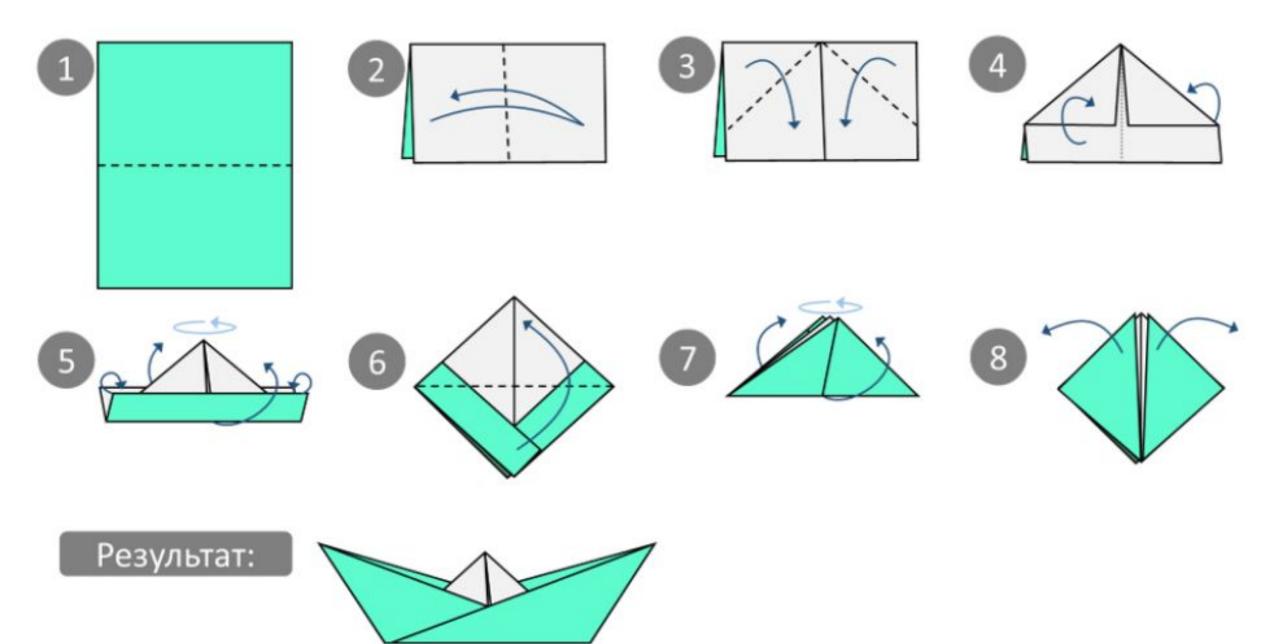
В большинстве случаев решение каждой задачи можно разбить на простые этапы (шаги).

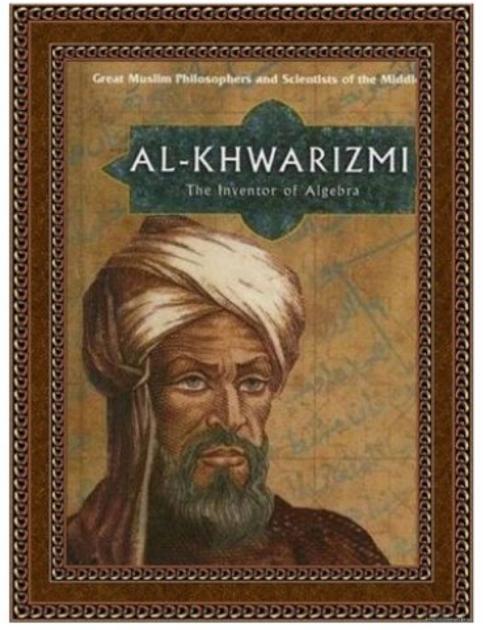
Для многих таких задач уже разработаны и предлагаются пошаговые инструкции, при последовательном выполнении которых можно прийти к желаемому результату.

Рабочий стол: пошаговая инструкция по сборке

Сборку мебели рекомендуем доверить специалисту. При самостоятельной сборке строго следуйте указаниям данной инструкции.

Фирма-изготовитель "Исаев-Мебель" не несет ответственность за повреждения, которые произошли во время сборки.

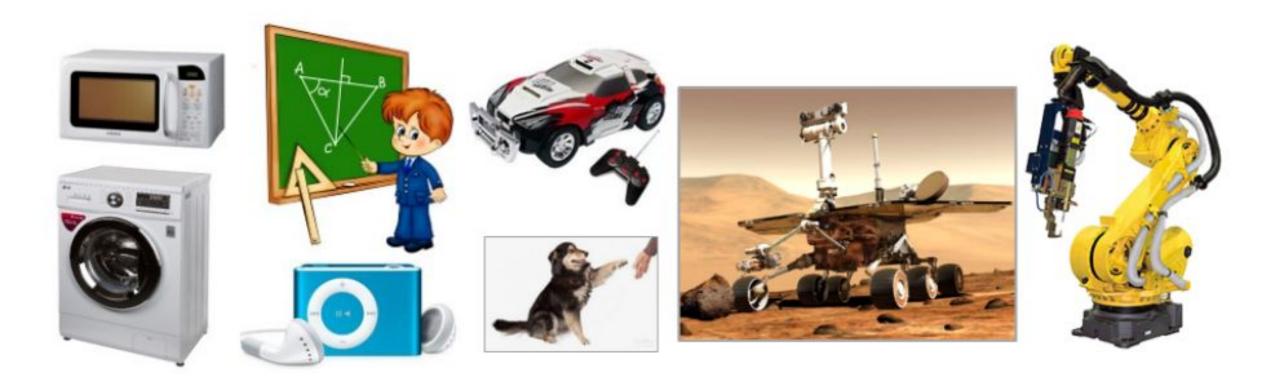

Для сборки изделия необходим следующий инструмент молоток


крестовая отвертка

ключ шестигранник 4мм (из комплекта поставки)

- Закрепить на нижних торцах боковых стенок (2) подпятники с помощью гвоздей (D). В отверстия боковых стенок вставьте эксцентрики (C). Стрелка на эксцентрике должна быть направлена вверх
- 2. Вставьте в глухие отверстия в боковых стенках (2) шканты и слегка постучите молотком для фиксации (E).
- 3. Соедините правую и левую боковые стенки (2) с царгой (3) с помощью винтовой стяжки (А), при этом обращая внимание чтобы шканты попадали в пазы царги. Для закручивания используйте прилагаемый в комплекте ключ.
- 4. В отверстня с нижней стороны столешницы (1) заверните штоки эксцентриков (В). Опустите столешницу (1) на боковины (2) таким образом, чтобы штоки эксцентриков вошли в отверстня на торцах боковин и царге (3), после чего поверните эксцентрики на 180 градусов по часовой стрелке.
 - 5. Закройте заглушками эксцентрики и винтовую стяжку.

Бумажный кораблик: пошаговая инструкция по сборке



Астроном и математик Аль-Хорезми, 780 - 850гг.

Слово «алгоритм» происходит от имени арабского учёного средневекового Мухаммада аль-Хорезми, который в правила вычислений веке описал числами. Работы десятичными Хорезми были переведены на латинский язык и стали известны в Европе. Через некоторое время слово «алгоритм» (имея автора **по-латыни** писали Algorizmi Algorizmus) или обозначать любую систему вычислений определённым правилам. время под алгоритмом подразумевается вычислений, порядок только рассматривается шире.

Исполнитель — это некоторый объект (человек, животное, техническое устройство), способный выполнять определённый набор команд.

Алгоритм — это точное описание последовательности действий некоторого исполнителя, строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.

Свойства алгоритмов

- 1. **Дискретность** алгоритм состоит из отдельных команд, следующих в определенном порядке.
- 2. **Понятность** алгоритм содержит только команды, входящие в систему команд исполнителя, для которого он предназначен.
- Определённость каждая команда должна однозначно определять действия исполнителя, на любом шаге не допускаются никакие двусмысленности или неопределённости, следующий шаг работы однозначно определяется состоянием системы.
- 4. **Конечность** (результативность) при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов.
- 5. **Массовость** (универсальность) алгоритм можно использовать для решения множества однотипных задач с различными исходными данными (при этом писать алгоритм заново не нужно!).
- 6. **Корректность** для любых допустимых исходных данных алгоритм должен приводить к правильному решению задачи.

СПОСОБЫ УПРАВЛЕНИЯ ИСПОЛНИТЕЛЕМ

ручное («с пульта»)

...означает, что **человек по очереди отдаёт** исполнителю **одну команду за другой**. Исполнитель тут же выполняет каждую введённую команду.

пульт

программное (по программе)

...исполнителем управляет автомат (например, компьютер) по готовому алгоритму. Алгоритм работы исполнителя должен быть записан на специальном языке, «понятном» компьютеру.

марсоход

бортовой компьютер

Программа – алгоритм, записанный на языке «понятном» компьютеру.

Некоторый алгоритм из одной цепочки символов получает новую цепочку следующим образом. Сначала вычисляется длина исходной цепочки символов; если она чётна, то удаляется правый символ цепочки, а если нечётна, то в начало цепочки добавляется буква $\mathbf{5}$. В полученной цепочке символов каждая буква заменяется буквой, следующей за ней в русском алфавите (\mathbf{A} — на $\mathbf{5}$; $\mathbf{5}$ — на $\mathbf{8}$ и т. д., а $\mathbf{7}$ — на \mathbf{A}).

Получившаяся таким образом цепочка является результатом работы описанного алгоритма.

Дана цепочка символов **СТОП**. Какая цепочка символов получится, если к данной цепочке применить описанный алгоритм **дважды** (т.е. применить алгоритм к данной цепочке, а затем к результату вновь применить алгоритм)?

Русский алфавит: АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ

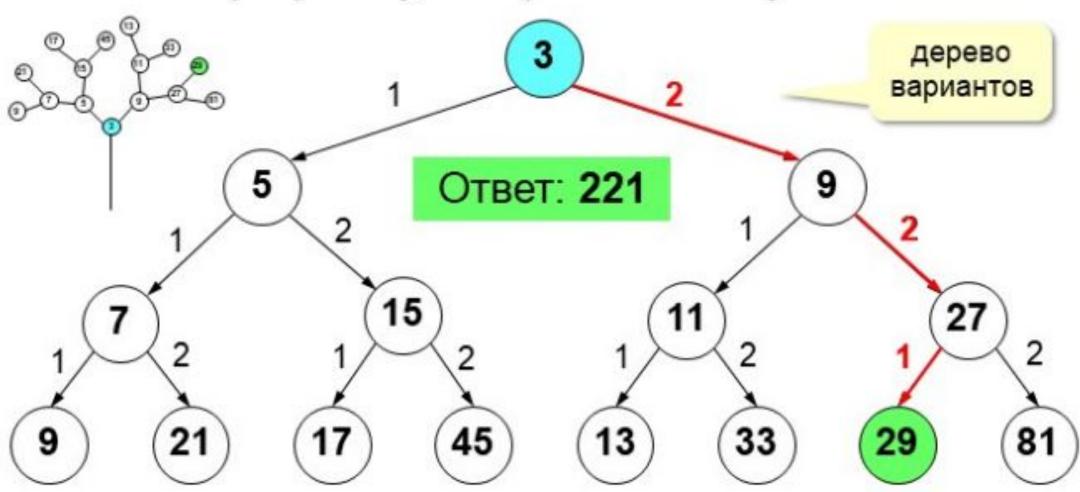
Применим алгоритм 1 раз:

СТОП (чётное) → **СТО** → **ТУП**

Применим его ещё раз:

ТУП (нечётное) → БТУП → ВУФР

Исполнитель Шифровальщик из одной цепочки символов получает новую цепочку следующим образом:


Если цепочка начинается с гласной буквы, Шифровальщик меняет местами первую и последнюю буквы, а если с согласной - вторую и предпоследнюю.

Этот алгоритм применили к слову КАТОК. Какое слово получилось?

https://kpolyakov.spb.ru/school/test7a/17a.htm

Используя команды:

- 1. прибавь 2
- умножь на 3 написать программу, которая из 3 получает 29.

Решение «с конца» короче, если в списке команд есть необратимая операция (каждое целое число можно умножить на 3, но не каждое делится на 3)!

У исполнителя Делитель две команды, которым присвоены номера:

- 1. раздели на 2
- 2. вычти 1

Первая из них уменьшает число на экране в 2 раза, вторая уменьшает его на 1. Исполнитель работает только с натуральными числами. Составьте алгоритм получения из числа 65 числа 4, содержащий не более 5 команд. В ответе запишите только номера команд.

https://kpolyakov.spb.ru/school/ogetest/b14.htm