курс: ЭНЕРГОСБЕРЕЖЕНИЕ
И СОВРЕМЕННЫЕ ИНЖЕНЕРНЫЕ СИСТЕМЫ
С ВОЗОБНОВЛЯЕМЫМИ ИСТОЧНИКАМИ
ЭНЕРГИИ

Тепловые насосы

Кафедра «Атомные станции

и возобновляем ые

© Екатеринбург УрФУ, 2017.

Вопросы лекции

- 1. Принцип работы ТН
- 2. Физика теплового насоса
- 3. Коэффициент эффективности ТН
- 4. Источники низкопотенциального тепла
- 5. Энергетический ряд ТН

Тепловой насос ТН-300

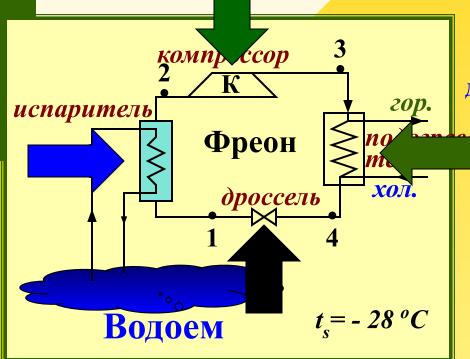
Фреон - 430 кг

масло - 40 кг

Темп.хладагента 80°C

масс Потребляемая эл.мощность - 90 кВт (НПИ-8°С) Теплопроизводительность - 300 кВт (НПИ-8°С) Площадь отапл.помещения -4730 кв.м

Три контура ТН:


- 1. Хладоновый
 - 2. Водяной источника
 - 3. Водяной отопления

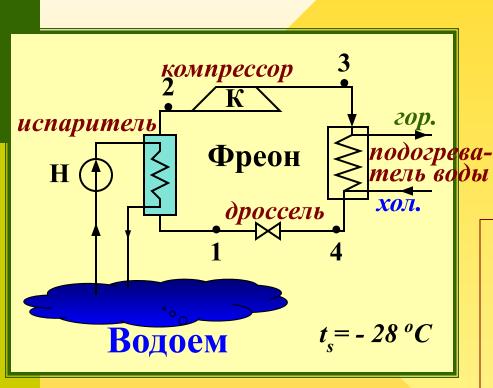
- 1 речная вода;
- 2-водяной насос;
- 3-речная вода 4,5 °C
 - 4- нагретая вода 50 °C 5-обратная вода 44 °C; 6-сбросная вода 3,3 °C;

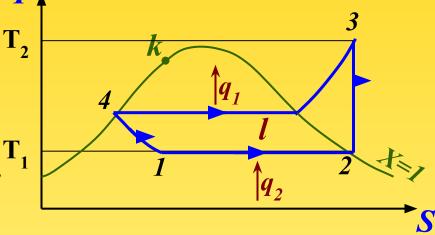
Три основных агрегата ТН

- А- ИСПАРИТЕЛЬ;
- В- КОНДЕНСАТОР;
- С- КОМПРЕССОР;

Работа теплового насоса

За счет теплоты источника с низкой температурой в испарителе происходит процесс парообразования рабочего тела с низкой температурой кипения (аммиак, фреоны).


Полученный пар направляется в компрессор, в котором температура рабочего тела повышается от t_2 до t_1 .


Пар с температурой t_1 поступает в конденсатор, где при конденсации отдает свою теплоту жидкости, циркулирующей в отопительной системе.

Образовавшийся конденсат рабочего тела направляется в дроссельный вентиль. Там он дросселируется с понижением давления от p_1 до p_2 .

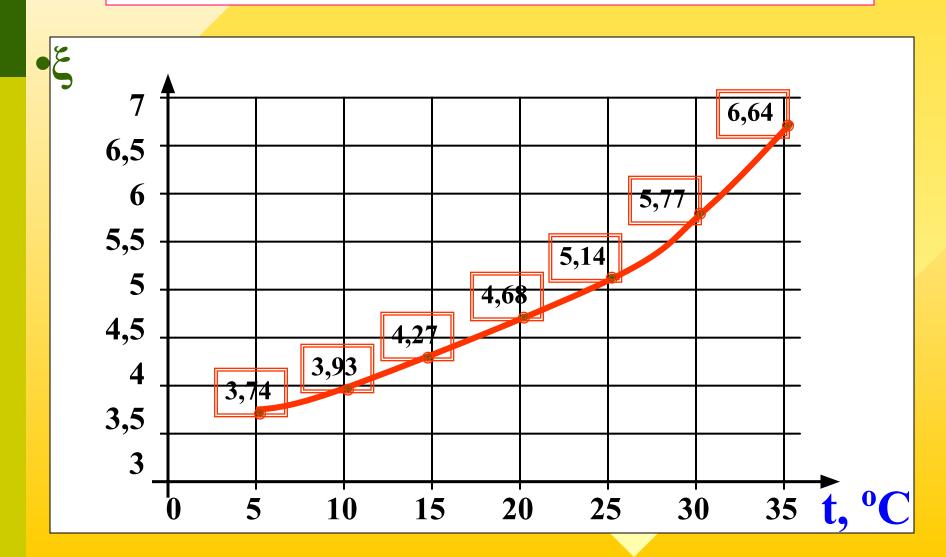
После дроссельного вентиля жидкое рабочее тело снова поступает в испаритель.

Физика теплового насоса

- **q**₂ теплота, получаемая фреоном в испарителе;
- q_1 теплота, отданная в отопительную систему;
- гатраченная работа в компрессоре.
- (1-2) процесс испарения и охлаждения рассола, циркулирующего в охлаждаемых камерах;
- (2-3) адиабатное сжатие пара;
- 3 перегретый пар;
- (3-4) процесс превращения пара в жидкость;
- (4-1) процесс дросселирования как необратимый процесс изображается на диаграмме условной кривой.

$$q_1 = q_2 + l$$

Тепловой насос ТН-500

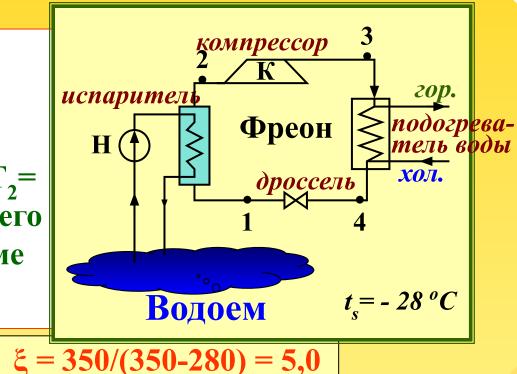

Коэффициент преобразования ТН ξ

Для ТН, потребляющих механическую энергию, величиной, характеризующей их эффективность, является коэффициент преобразования, т.е отношение полученной теплоты к затраченной работе $\xi = (q_1/l) > 1$

$$\xi = q_1/l = T_1/(T_1 - T_2)$$

Коэффициент преобразования зависит от параметров внешних источников - температур воды на входе в испаритель t_{SI} и на выходе из конденсатора t_{W2} .

Зависимость эффективности теплового насоса от температуры низкопотенциального источника



Рассчитать эффективность ТН

Задача:

•Отопление здания зимой осуществляется от речной воды с температурой 7^{0} С (T_{2} = =280 К). Температура рабочего тела в отопительной системе 77^{0} С(T_{1} =350). Найти ξ .

$$\xi = q_1/l = T_1/(T_1 - T_2)$$

- •Эта величина показывает, что тепловой насос передает теплоты в отопительную систему в пять раз больше, чем затрачивается работы.
 - •Если на механическую работу расходуется 1 МДж электроэнергии, то в отопительную систему передается 5 МДж теплоты, т.е.в 5 раз больше, чем при чисто электрическом отоплении.

Несмотря на то, что всегда ξ>1, делать вывод о безусловной целесообразности ТН преждевременно.

Коэффициент преобразования зависит от:

- температурного режима работы;
- вида термодинамического цикла;
- свойств рабочего вещества;
- объемных коэффициентов компрессора;
- энергетических коэффициентов компрессора и др.

Источники низкопотенциального тепла

Естественные

Искусственные

1.Солнце

2.Вода

3.Грунт

4.Воздух

1.Продукты

животноводства

2.Сточные

воды

3.Охлаждающие жидкости

> 4.Отходящие газы

Искусственные

1.Продукты животноводства

Биоотходы

2.Сточные воды

3.Охлаждающие жидкости

Молоко

Производственные

Хозяйственно-

Атмосферные

4.Отходящие газы

Технологических целей

Энергетических установок

Агрегатов производственного оборудования (компрессоров, выкуум-выпарн.уст)

Энергетических установок ТЭЦ, ГРЭС, ГТУ

Термических камер для охлаждения или сушки

Продуктов производства Вент. Воздух жилых и произв.помещ

Естественные

Тепловой насос ТН-3000

Фреон - 2700 кг масло - 800 кг Темп.хладагента 80°С масса ТН-22 т расход гор.в-140 м³/ч расход НПИ - 310 м³/ч Габарит 5 х 2 х 1,5

Потребляемая эл.мощность - 630 кВт (НПИ-8°С) Теплопроизводительность - 2500 кВт (НПИ-8°С) Площадь отапл.помещения - 35700 кв.м

Энергетический ряд ТН России

Тип насоса	Потребляемая мощность	Тепловая мощность	Отапливаемый объект
TH-30	9,5	25	Коттедж 200 кв.м
TH-65	19	60	2 коттеджа 200 кв.м
TH-300	90	300	15 котт.или 70 кварт.
TH-500	0 150	500	25 котт.или 100 кварт.
TH-100	0 300	1000	200-250 квартир
TH-300	0 650	3000	400-450 квартир или промышл.объект

Показатели экономической эффективности ТН

Себестоимость

производства тепла 120 -200 руб/Гкал

Сроки окупаемости капитальных затрат

1,5-3 года

Удельные кап.затраты: 80-90 тыс.\$ за 1 Гкал расчетной теплопроизводительности

В мировом сообществе происходит кардинальный переход от котельных, сжигающих органическое топливо, к тепловым насосам (ТН), использующим рассеянное природное тепло.

Для информации:

•В Японии в 1997 г. продано 3 мли ТН •В США - 1 мли ТН

- •Доля ТН в теплоснабжении Швеции составляет 50 %;
- •Часть г. Стокгольма переведена с 1980г. на отопление посредством ТН мощностью 320 МВт, использующих тепло Балтийского моря;

Варианты применения ТН

1. Применение ТН вместо котельных на угле и мазуте, имеющих высокую с/ст-ть производимой тепл. энергии.

Для производства 1 Гкал (1163 кВт ч) тепла на угольной котельной с эффективностью использования топлива 60 % требуется 420 кг угля (теплотворная способность 4000 ккал/кг (17МДж/кг)

В ТН при КПТ=0,4 (t НПИ=+10 C) аналогичный результат будет при затрате 277 кВт ч электроэнергии.

2. Применение ТН на промышленных предприятиях использующих в производстве техническую воду оборотного водоснабжения

Варианты применения ТН

3. Снижение остроты проблем горячего водоснабжения обособленных населенных пунктов, имеющих котельные на угле и мазуте.

Особенно эффективно в летнее время, в период остановки котельных на ППР.

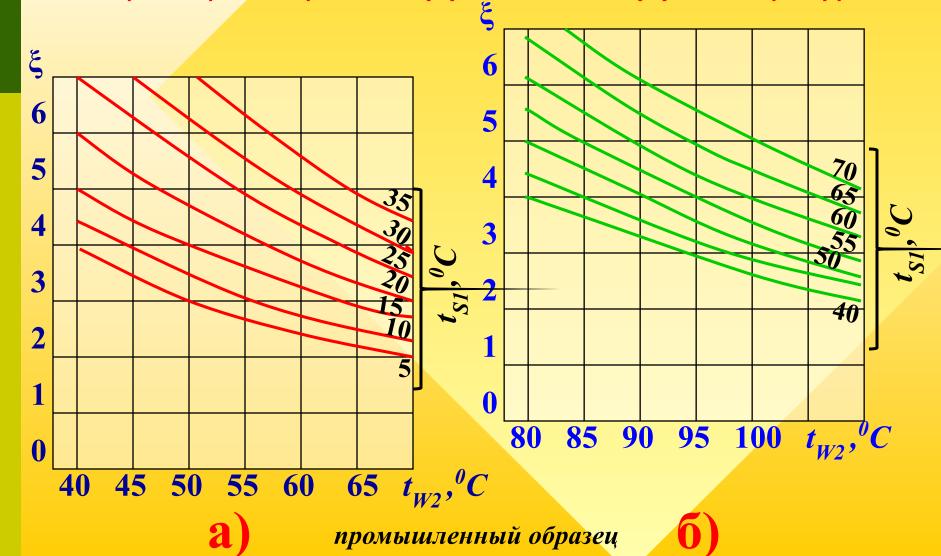
4. Системы теплоснабжения социально важных объектов: ДДУ, больниц, ВУЗов, находящихся в зоне системы централизованного теплоснабжения, но испытывающих дефицит тепла

ТН выполнит функцию температурного стабилизатора, позволит значительно снизить потребление эл.энергии, используемой электронагревательными приборами.

Применение тепловых насосов (ТН)

При отводе теплоты от источников низкого температурного потенциала и затрате механической (электрической) энергии в ТН получают теплоту с такой температурой, при которой её можно использовать для отопления, горячего водоснабжения или для производственных нужд.

ТН используют:


- в системах круглогодичного кондиционирования воздуха;
- -для сушки зерна;
- -в технике опреснения и выпаривания водных растворов;
- -в системах горячего водоснабжения бань;
- -для термообработки молока;
- -для других производственных и бытовых целей.

Энергетический и экономический эффект

Наиболее благоприятны условия применения тепловых насосов для одновременного получения теплоты и холода там, где отношение потребностей в них близко к отношению теплопроизводительности теплонасосного цикла и холодопроизводительности.

Применение холодильных машин для теплофикационных целей на объектах, потребляющих холод и теплоту, дает энергетический и экономический эффект.

Зависимости коэффициента преобразования ξ от температур охлаждаемой в испарителе воды t_{S1} и нагретой в конденсаторе воды t_{W2} в TH с винтовыми компрессорами средней (а) и высокой (б) температуры

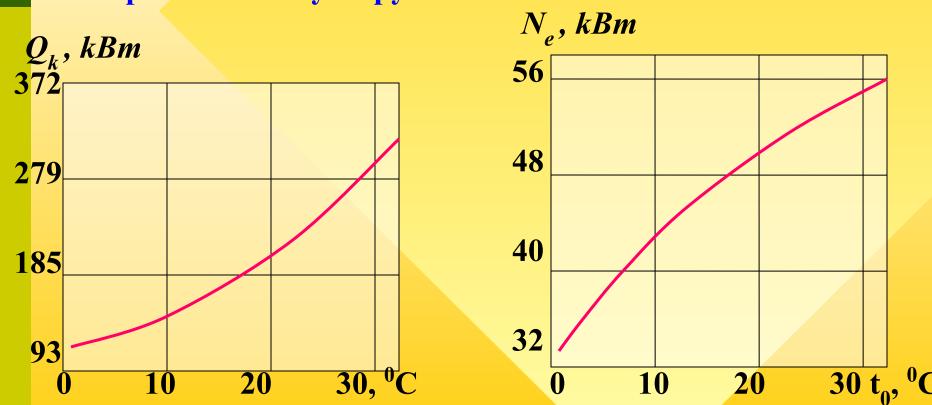
Возможные схемы работы ТН

ТН средней температуры работают по обычной одноступенчатой схеме

ТН высокой температуры выполняют работу по каскадной схеме:

в верхней ветви каскада используются смеси R142, R11 или другие рабочие вещества.

в нижней ветви каскада используются рабочие вещества среднего давления R717, R22 и др.


Отечественные тепловые насосы

Отечественные тепловые насосы работают по одноступенчатому регенеративному циклу как в режиме теплоснабжения с получением горячей воды воды от 45 до 58 °C при t-ре кипения в испарителе не ниже 6 °C, так и в режиме хладоснабжения с получением

сладоносителя с температурой до -25 °C при охлаждении конденсатора водой не выше 30 °C

Тепловой насос НТ-80

Отечественные ТН состоят из компрессорно-конденсаторных, испарительно-ресиверных агрегатов, станций переключений и щитов управления и сигнализаций. Конденсаторы и испарители - кожухотрубного типа.

Зависимости теплопроизводительности Q_k и эффективной мощности N_{ρ} от т-ры t_0 при температуре конденсации $t_{\kappa}=61~{}^{0}{\rm C}$