* ОРГАНИЧЕСКАЯ ХИМИЯ Лекция 1

- 1. Особенности соединений углерода, их многообразие, роль в живой природе и практической деятельности человека.
- 2. Краткая история органической химии.
- 3. Классификация органических соединений
- 4. Химическая связь в органических соединениях

*1.Особенности соединений углерода, их многообразие, роль в живой природе и практической деятельности человека.

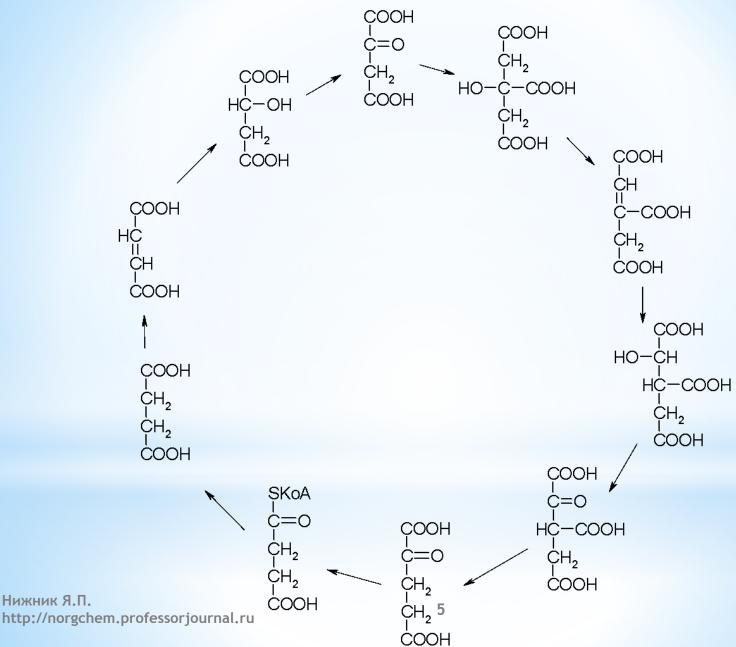
Органическая химия - раздел химии, изучающий соединения углерода. Термин был введён шведским химиком Й.Я. Берцелиусом в 1808 году.

Органическая химия изучает свойства органических соединений и методы их получения

Органические соединения - это углеводороды и их производные. Производные углеводородов содержат функциональные группы - атомы или группы атомов, определяющих характерные химические свойства соединения и принадлежность к определённому классу соединений.

*Почему соединения одного элемента - углерода - необходимо рассматривать отдельно от всех остальных?

1. Количество соединений углерода огромно


- *Атомы углерода способны связываться друг с другом, образуя устойчивые цепочки и циклы, что делает количество соединений углерода в принципе бесконечным.
- * Углерод способен образовывать одинарные, двойные и тройные связи, и устойчивые связи с другими элементами. Это определяет огромное разнообразие органических соединений.

2. Соединения углерода имеют очень практическое большое значение

*Органическая химия - основа биологической химии, молекулярной биологии и фармакологии, и теоретическая основа для производства средств защиты растений, моющих средств, красителей, полимеров, различных нефтепродуктов и т.д.

- *Зачем изучать органическую химию студентам нехимических специальностей, например на агротехническом, биологическом и медицинском факультетах?
- *1. Органическая химия основа биологической химии и поэтому без знания органической химии невозможно понять химию живого организма.
- *2. Каждый специалист, работающий в области, связанной с удобрениями, гербицидами, инсектицидами, лекарственными препаратами, красителями, пищевыми добавками, нефтепродуктами должен знать основы органической химии чтобы иметь представление о свойствах этих веществ и потенциальных рисках.

Цикл трикарбоновых кислот

23.09.2017

* 2. Краткая история органической химии

2.1. Эмпирический период

В 17-18 вв. было получено большое количество органических соединений в индивидуальном виде, таких например, как щавелевая, лимонная, яблочная, мочевая, муравьиная кислоты, мочевина и т.д.

2.2. Аналитический период

- *Это 18 век середина 19 века.
- *Все органические соединения содержат углерод.
- *Были созданы две теории теория радикалов и теория типов.
- *Представление о "жизненной силе" и концепция "витализма", утверждавшая наличие в организмах некой нематериальной "жизненной силы" (vis vitalis) с помощью которой организм синтезирует сложные органические вещества.
- *Первый органический синтез провёл немецкий химик Ф. Вёлер в 1828 году нагреванием неорганического соединения изоцианата аммония, при этом образовывалась мочевина: (NH₂)₂

http://norgchem.professorjournal.ru

2.3. Структурный этап. 19 век - начало 20 века.

*Немецкие химики А. Кекуле и Г. Кольбе установили четырёхвалентность углерода и высказали мысль о способности атомов углерода соединяться в длинные цепочки.

- *Русский химик А.М. Бутлеров создал структурную теорию:
 - * "структура" последовательность атомов и связей между атомами в молекуле
 - * структура определяет химические и физические свойства веществ

*Голландский химик Я.Х. Вант-Гофф и французский химик Ж. А. Ле Бель представление о пространственном трёхмерном строении органических молекул (1874).

н-бутиловый спирт

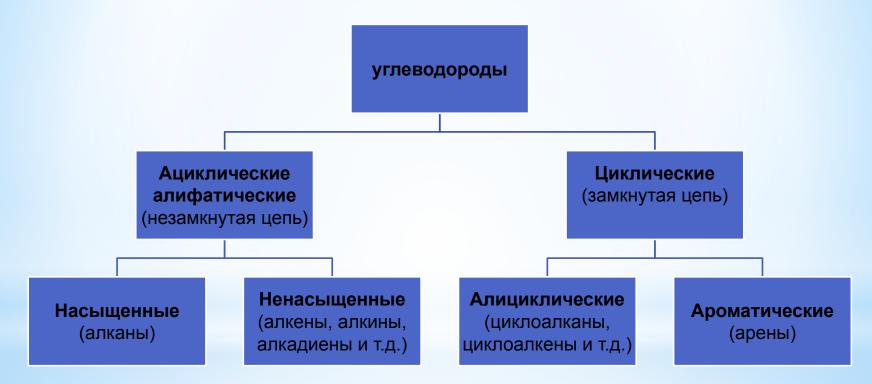
вт ор-бутиловый спирт

изобутиловый спирт

т рет -бутиловый спирт

$$CH_3-C \stackrel{O}{\longleftarrow} CI \xrightarrow{Zn(CH_3)_2} \xrightarrow{H_2O} CH_3-C-OH_3$$

$$CH_3-C \stackrel{C}{\longleftarrow} CH_3$$


$$CH_3$$

2.4. Современный период

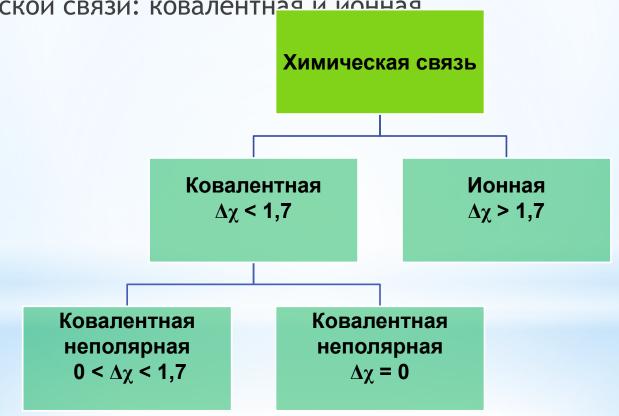
- *Развитие синтетической органической химии
- *Внедрение квантово-механических представлений и физических методов исследования веществ
- *Тесная связь с другими дисциплинами с физической, неорганической, биологической и координационной химией.

* 3. Классификация органических соединений

3.1. Классификация органических соединений по углеродному скелету.

*3.2. Классификация органических соединений по функциональным группам

Класс	Функциональная группа		Пример
карбоновые кислоты	—c ^O ОН —соон	карбоксильная группа, карбоксигруппа	CH ₃ -C,O
сульфокислоты	О — S – ОН О — SO ₃ H	сульфогруппа	SO ₃ H
галогенангидриды	—с О СI —сосі	галогенокарбонильная	CH ₃ -C CI
сложные эфиры	-c,0 0-R -coor	алкоксикарбонильная	CH_3-C $O-C_2H_5$


амиды	_{/,} 0	карбоксамидная	,0
	−C´ NH₂	(амидная)	CH ₃ -C(NIL)
	-CONH ₂		NH ₂
нитрилы		нитрильная	
	—c≡n		CH—C=N
	-cn		CH ₃ −C≡N
альдегиды		формильная,	
	0	альдегидная	_0
	-c		CH ₃ -C
	—сно		`H
кетоны		оксогруппа кетогруппа,	
		карбонильная группа	
	0 C		O
	—Ċ—		H ₃ C-C-CH ₃
спирты и фенолы		гидроксигруппа,	
		оксигруппа	
	—он		CHOH
			C ₂ H ₅ OH

меркаптаны,		меркаптогруппа,	
тиолы	-SH	тиогруппа,	C ₂ H ₅ SH
		сульфанильная группа	25
амины		аминогруппа	
	$-NH_2$		C ₂ H ₅ -NH ₂
			2 5 2
простые эфиры		алкоксигруппа	
	—o-R		$C_2H_5-O-C_2H_5$
нитросоединения	0_	нитрогруппа	
	$-\overset{+}{N}\overset{O}{\underset{O}{}}$		CLLNO
			CH ₃ NO ₂
	—NO ₂		
нитрозосоединения		нитрозогруппа	
	—N=0		$\langle \rangle$ -NO
	—NO		
галогенопроизводные	-F, -Cl, -Br, -I	галоген	0.11.01
			C ₂ H ₅ Cl

*4. Химическая связь в органических соединениях

*Химическая связь - взаимодействие между атомами, приводящее к образованию молекул или кристаллов.

*В органических соединениях существует два основных типа химической связи: ковалентная и ионная

*****4.1. Ионная связь

*Встречается в органических соединениях редко

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

*В белках ионные связи могут завязываться между остатками моноаминодикарбоновых и диаминомонокарбоновых кислот, стабилизируя третичную структуру белка:

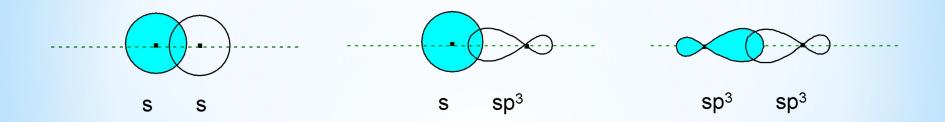
Нижник Я.П. http://norgchem.professorjournal.ru

16

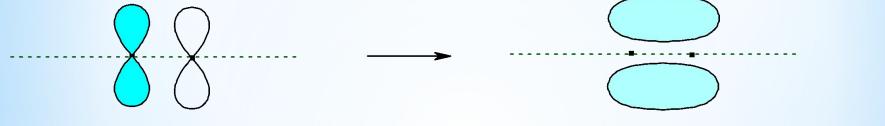
*4.2. Ковалентная связь

*Ковалентная связь является основной в органических соединениях. Такая связь образуется путём обобществления пары электронов двух атомов.

*4.2.1. Классификация ковалентных связей.

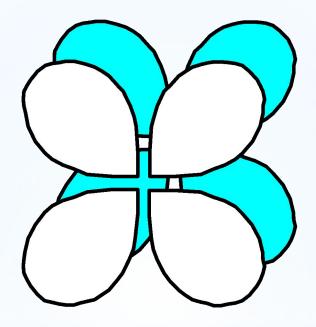

*****I. По полярности.

$$H c=cH$$


$$H C = C$$

*II. По симметрии орбиталей

*_{σ-Связь} - ковалентная связь, образованная при перекрывании атомных орбиталей вдоль оси, соединяющей ядра атомов:


 $\frac{*}{\pi\text{-связь}}$ - ковалентная связь, возникающая при боковом перекрывании негибридных p-орбиталей. При этом локализованные p-атомные орбитали делокализуются, образуя π -орбитали:

две р-атомные орбитали

π-связывающая молекулярная орбиталь

*δ-Связь - связь, образованная при фронтальном перекрывании d-орбиталей:

Такая связь образуется в неорганических соединениях между атомами металлов

* III. Классификация ковалентных связей по способу образования

* Обменный механизм. В образовании связи участвуют одноэлектронные атомные орбитали. Каждый атом предоставляет 1 электрон для образования общей пары:

*Донорно-акцепторный механизм. Образование связи происходит за счёт пары электронов донора и вакантной (свободной) орбитали акцептора.

семиполярная связь, которая является результатом и ковалентного взаимодействия и притяжения противоположных зарядов:

$$H_3$$
С N $+$ N $+$

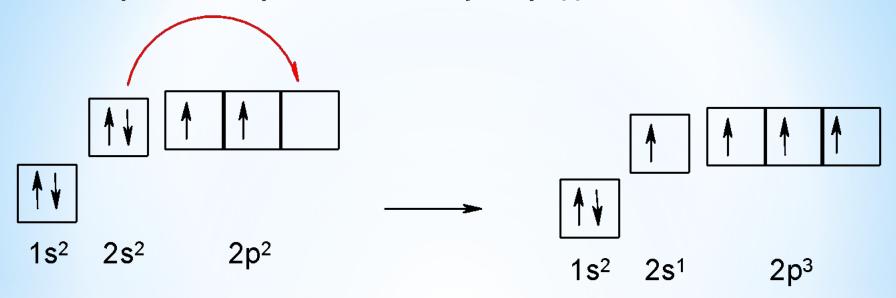
23.09.2017

*IV Классификация ковалентных связей по порядку связи

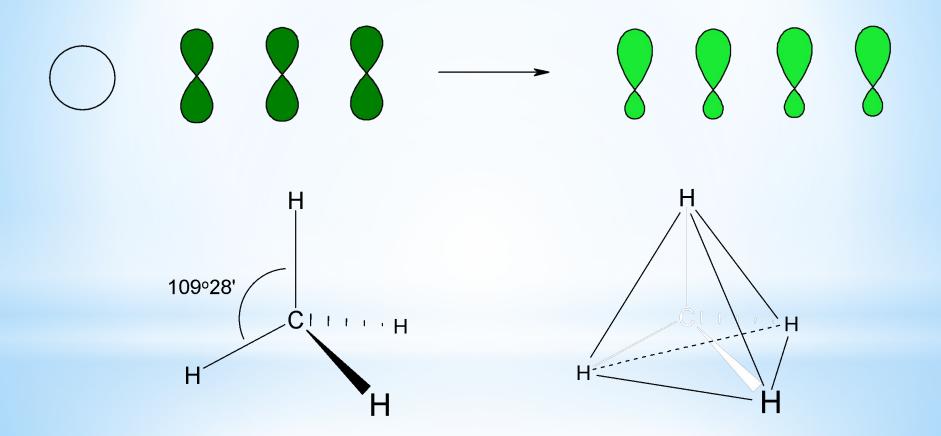
- *1. Одинарные (одна σ-связь) например, между углеродами в молекуле этана
- *2. Двойные (1 σ -связь и 1 π -связь), например, в молекуле этилена
- *3. Тройные (1 σ -связь и 2 π -связи), как например, в молекуле ацетилена
- *4. Четвертные (1 σ -связь, 2 π -связи и 1 δ -связь) встречаются в неорганических соединениях между атомами металлов, например
- *Между двумя атомами металлов (Cr, Mo) возможно образование пяти и даже шести связей.

$$H-C-C-H$$
 H
 $C=C$
 H

*4.2.3. Характеристики ковалентных связей

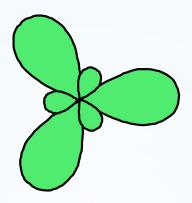

- *****I. Энергия связи
- *II. Длина связи
- *III. Полярность

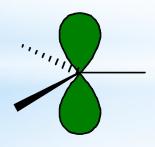
*IV Handiduanam

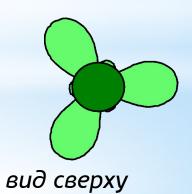

СВЯЗЬ	Энергия связи, кДж/моль*	Длина связи, нм**
C-C	346	0,154
C=C	606	0,134
C≡C	828	0,120

***4.2.4.** Гибридизация

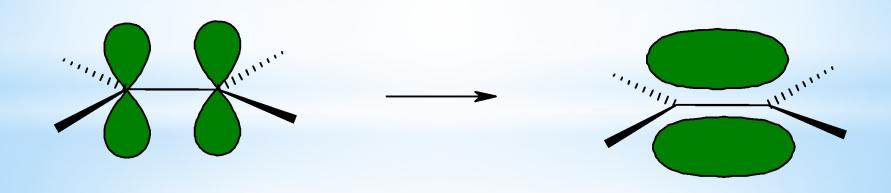
*Электронное строение атома углерода

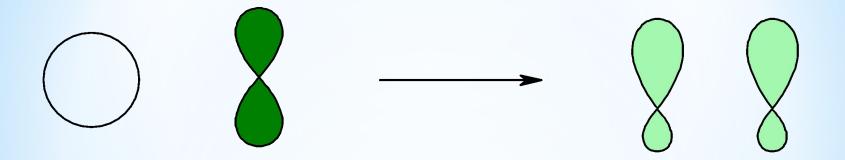

* sp^3 -Гибридизация. В этом случае выравниваются энергии одной 2s и трёх 2p-орбиталей, при этом образуются 4 одинаковые sp^3 - орбитали:

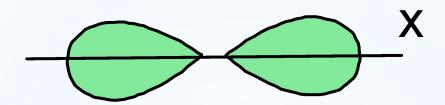

* sp^2 -Гибридизация. Энергии одной 2s и двух 2p-орбиталей выравниваются, при этом образуются 3 одинаковые sp^2 -орбитали и остаётся одна негибридная p-орбиталь:

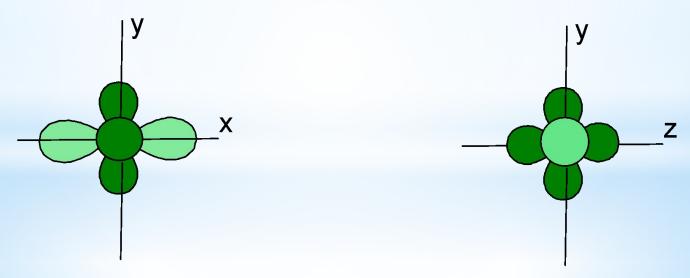

*Гибридные орбитали отталкиваются друг от друга, образуя треугольную (тригональную) структуру, поэтому атом углерода в состоянии sp^2 -называется тригональным:

Негибридная p-орбиталь располагается перпендикулярно плоскости, проходящей через три гибридные орбитали:

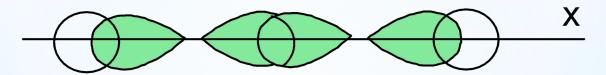

вид сбоку

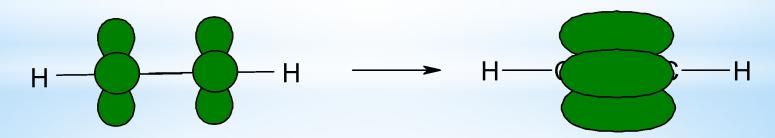

*Три sp^2 -гибридные орбитали участвуют в образовании трёх σ -связей: например в этилене:


Две негибридные орбитали перекрываются с образованием π -связи:

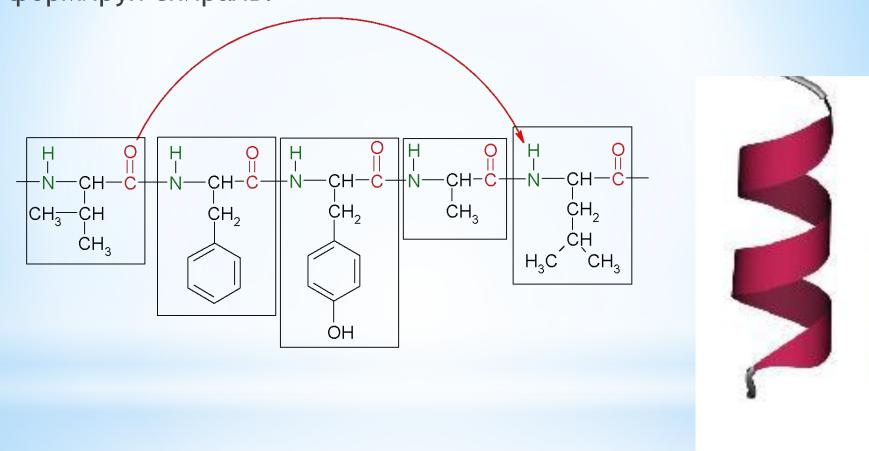

*sp-Гибридизация. В этом случае выравниваются энергии одной 2s и одной 2p-орбиталей, при этом образуются 2 одинаковые sp-орбитали и остаются негибридными две p-орбитали:

*Две *sp*-гибридные орбитали отталкиваются друг от друга, при этом максимумы электронной плотности располагаются на одной прямой


Две негибридные p-орбитали располагаются перпендикулярно друг другу в одной плоскости, которая перпендикулярна этой прямой x:


*Молекула ацетилена содержит атомы углерода в состоянии spгибридизации 180°

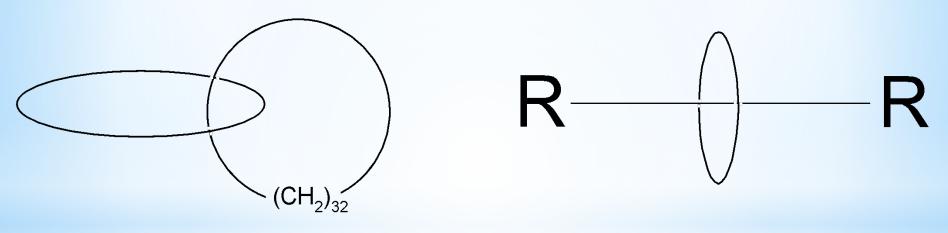
За счёт гибридных орбиталей образуют связи с атомами водорода и σ -связь между атомами углерода:


Негибридные p-орбитали перекрываются, образуя две π -связи:

*4.3. Другие типы взаимодействий

Водородная связь - притяжение протонизированного атома водорода, присоединённого к атому электроотрицательного элемента, к любому другому атому, несущему отрицательный заряд.

*В α -структуре белков каждый первый и пятый остатки аминокислот образуют между собой водородные связи, формируя спираль:



(A.B. Финкельштейн. Введение в физику белка. http://phys.protres.ru/lectures/protein_physics/)

*водородные связи между комплементарными основаниями в двойной спирали ДНК: между аденином и тимином образуются три водородные связи, а между гуанином и цитозином завязываются две связи:

*Слабые электростатические взаимодействия - дипольдипольные, ион-дипольные взаимодействия и дисперсионные силы Лондона (взаимодействия ван-дер-Ваальса).

*Топологическая связь - механическая связь

катенан

ротаксан

Спасибо за Ваше внимание!