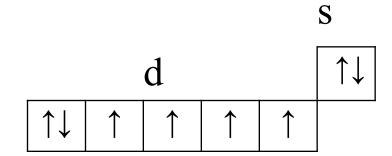
# Химия элементов семейства железа

# VIII В-группа


| П      | Триады (семейства) элементов |           |             |  |
|--------|------------------------------|-----------|-------------|--|
| Период | VIIIB1                       | VIIIB2    | VIIIB3      |  |
| IV     | Fe                           | Co        | Ni          |  |
| V      | Ru                           | Rh        | Pd          |  |
| VI     | Os                           | Ir        | Pt          |  |
| VII    | Hs                           | Mt        | Ds          |  |
|        | хассий                       | мейтнерий | дармштадтий |  |

#### Семейство железа

Fe, Co, Ni

d-элементы

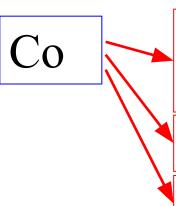
$$(n-1)d^6ns^2$$



преобладает

горизотальная периодичность

|                       | Fe         | Co            | Ni            |
|-----------------------|------------|---------------|---------------|
|                       | $3d^64s^2$ | $3d^74s^2$    | $3d^84s^2$    |
| r <sub>a</sub> , пм   | 1,26       | 1,25          | 1,24          |
| t <sub>пл.</sub> , °C | 1539       | 1496          | 1455          |
| Е <sub>И1</sub>       | 7,87       | 7,86          | 7,6           |
| ЭО                    | 1,64       | 1,70          | 1,75          |
| C.O.                  | +2,+3,+6   | <b>+2</b> ,+3 | <b>+2</b> ,+3 |


Co, Ni – ближе по свойствам

Fe Месопотамия 3000 лет до н.э. Египет 2500 лет до н.э.

Термин «железный век» – середина 19 в.

#### Название

южно-славянское «зализо» или «лезо»  $\rightarrow$  «лезвие»  $\rightarrow$  «железо»



Древний Египет – кобальтовые краски – синие стекла

название – Г.И. Гесс

как металл – Г. Брандт 1735 г.

Ni

Древний Китай (II в. до н.э.)
– сплавы никеля с медью

«никель» — имя горного духа «куперникель» — «медный дьявол»

# В природе:

 $Fe_2O_3 \cdot H_2O$  – лимонит (бурый железняк)



Fe<sub>2</sub>O<sub>3</sub> – гематит (красный железняк)



Fe<sub>3</sub>O<sub>4</sub> – магнетит (магнитный железняк)



FeCO<sub>3</sub> – сидерит



FeS<sub>2</sub> – пирит («золото дураков»)

FeS, CoS, NiS – колчеданы

CoAsS, NiAsS – блески



Ni – Норильск

Со – Средний Урал (г. Пышма)

руды Fe: 70 % металла

**руды Со и Ni:** полиметаллические содержат Fe, Pt, Au, Se, Cu, Pb, Mn, Bi, Ag

#### Получение

### Получение Fe

- 1 способ две стадии
  - 1) получение чугуна
  - 2) «передел» чугуна продувка воздухом, обогащенным О<sub>2</sub>

конверторный

 $\approx$ 30 мин

мартеновский

≈10 час

$$Fe_{3}O_{4} + CO \xrightarrow{t} FeO + CO_{2}\uparrow$$

$$FeO + C \xrightarrow{t} Fe + CO\uparrow$$

# 2 способ – бездоменный

непосредственное восстановление Ме (Менделеев)

$$Fe_3O_4 + CO + H_2 \xrightarrow{800^{\circ}C}$$
  $Fe + CO_2 \uparrow + H_2O \uparrow$  отсутствуют жидкие фазы  $Me -$ твердый

3 способ – восстановление водородом

$$Fe_2O_3 + H_2 \xrightarrow{t} Fe + H_2O\uparrow$$

# 4 способ — термическое разложение карбонилов

$$Fe(CO)_5 \xrightarrow{t} Fe + 5CO \uparrow$$

5 способ – электролиз

### Co, Ni

#### 1 способ –

1) обжиг 
$$CoS + O_2 \xrightarrow{t} CoO + SO_2$$
 NiS NiO

2) восстановление оксидов

$$\begin{array}{cccc} \text{CoO} + \text{C} & \xrightarrow{t} & \text{Co} & + \text{CO} \uparrow \\ \text{NiO} & \text{CO} & & \text{Ni} & & \text{CO}_2 \uparrow \\ & & \text{H}_2 & & & \text{H}_2 \uparrow \end{array}$$

#### 2 способ –

### прямое восстановление Ме

(пирометаллургия)

$$Co_3O_4 + A1 \xrightarrow{t} Co + Al_2O_3$$
  
 $Co_2O_3$ 

$$\begin{array}{ccc}
\text{NiO} + \text{Al} & \xrightarrow{t} & \text{Ni} + \text{Al}_2\text{O}_3 \\
\text{Si} & & \text{SiO}_2
\end{array}$$

#### Химические свойства

 $Fe \rightarrow Co \rightarrow Ni \downarrow$  активности

| $Fe - 2\bar{e} \rightarrow Fe^{+2}$ | $\phi^{\circ} = -0,440 \text{ B}$    |
|-------------------------------------|--------------------------------------|
| $Co - 2\bar{e} \rightarrow Co^{+2}$ | $\varphi^{\circ} = -0.277 \text{ B}$ |
| $Ni - 2\bar{e} \rightarrow Ni^{+2}$ | $\varphi^{\circ} = -0.250 \text{ B}$ |
| $Fe - 3\bar{e} \rightarrow Fe^{+3}$ | $\varphi^{\circ} = -0.037 \text{ B}$ |
| $Co - 3\bar{e} \rightarrow Co^{+3}$ | $\varphi^{\circ} = +0,418 \text{ B}$ |

#### Реакции с простыми веществами

$$Me + O_2 \rightarrow MeO (Me_2O_3, Me_3O_4)$$
 в зависимости от температуры

Fe + Cl<sub>2</sub> 
$$\rightarrow$$
 Fe<sup>+3</sup>Cl<sub>3</sub>  
Co  $\text{Co}^{+2}\text{Cl}_2$   
Ni  $\text{Ni}^{+2}\text{Cl}_2$ 

в зависимости от устойчивости С.О.

образуют — сульфиды карбиды нитриды силициды и др.

#### С разбавленными кислотами – легко

Me + 2HCl 
$$\rightarrow$$
 H<sub>2</sub>↑ + MeCl<sub>2</sub>  
+ H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  H<sub>2</sub>↑ + MeSO<sub>4</sub>  
Fe<sup>+2</sup>, Co<sup>+2</sup>, Ni<sup>+2</sup>

Fe + HNO<sub>3</sub>(pa36.) 
$$\rightarrow$$
 Fe<sup>+3</sup>(NO<sub>3</sub>)<sub>3</sub> + NO↑ + H<sub>2</sub>O  
Co  $\text{Co}^{+2}(\text{NO}_3)_2$   
Ni  $\text{Ni}^{+2}(\text{NO}_3)_2$   
Fe<sup>+3</sup>, Co<sup>+2</sup>, Ni<sup>+2</sup>

Fe +HNO<sub>3</sub>(оч. разб.)  $\rightarrow$  Fe(NO<sub>3</sub>)<sub>3</sub>+NH<sub>4</sub>NO<sub>3</sub>+H<sub>2</sub>O

# C конц. $HNO_3$ и $H_2SO_4$ – реакции при нагревании

Fe + HNO<sub>3</sub>(конц.) 
$$\rightarrow$$
 Fe<sup>+3</sup>(NO<sub>3</sub>)<sub>3</sub> + NO<sub>2</sub>↑ + H<sub>2</sub>O  
Co Co<sup>+2</sup>(NO<sub>3</sub>)<sub>2</sub>  
Ni Ni<sup>+2</sup>(NO<sub>3</sub>)<sub>2</sub>

 $Fe^{+3}$ ,  $Co^{+2}$ ,  $Ni^{+2}$ 

# Химическая активность Fe - B в реакции с $H_2SO_4$ (конц.)

$$Fe + H_2SO_4(конц.) = Fe_2(SO_4)_3 + S \downarrow + H_2O$$

$$Co + H_2SO_4$$
(конц.) =  $CoSO_4 + SO_2 \uparrow + H_2O$   
Ni Ni $SO_4$ 

«на холоду» — пассивация

Реакции со щелочами (конц.  $\approx 50\%$ )

$$Fe + 2OH^- + H_2O \xrightarrow{t} [Fe(OH)_4]^{2-} + H_2↑$$
Со

(конц. ≈ 50%)

Ni + щелочь ≠

Реакции с водой

Fe + H<sub>2</sub>O 
$$\xrightarrow{t}$$
 FeO + H<sub>2</sub>↑ t < 600°C  
Fe<sub>3</sub>O<sub>4</sub> t > 600°C  
Co + H<sub>2</sub>O  $\xrightarrow{t}$  CoO + H<sub>2</sub>↑ t > 800°C  
Ni NiO

# Соединения Fe, Co, Ni

$$Fe \rightarrow Co \rightarrow Ni$$

снижение высшей устойчивой С.О.

соли со всеми анионами

число соединений ↓ в ряду

$$Fe^{+3} \rightarrow Co^{+3} \rightarrow Ni^{+3}$$

компенсируется многообразием и устойчивостью комплексных соединений  $Co^{+3}$ 

#### МеО – основные оксиды

MeO 
$$\rightarrow$$
 Me(OH)<sub>2</sub> – основания
$$Me^{+2} + 2OH^{-} \rightarrow Me(OH)_{2} \downarrow$$

#### особенность

$$Me(OH)_2\downarrow + 2OH^- \xrightarrow{t} [Fe(OH)_4]^{2-}$$
 $Ni$ 
 $[Ni(OH)_6]^{4-}$ 
(гор.конц.  $\approx 50\%$ )

$$Fe^{+2} + 2OH^- \rightarrow Fe(OH)_2 \downarrow (белый)$$

на воздухе

$$4\text{Fe}(OH)_2 + 2\text{H}_2\text{O} + \text{O}_2 = 4\text{Fe}(OH)_3 \downarrow \text{ бурый}$$

в присутствии окислителей

$$2Ni(OH)_2 + Br_2 + 2OH^- = 2Ni(OH)_3 \downarrow + 2Br^-$$
 салатовый черный

$$2\text{Co(OH)}_2 + \text{H}_2\text{O}_2 = 2\text{Co(OH)}_3 \downarrow$$
 розовый черный

#### Ионы $Fe^{2+}$ легко окисляются

$$\mathrm{FeS} + \mathrm{O_2} + \mathrm{H_2O} \rightarrow \mathrm{Fe(OH)_3} \downarrow + \mathrm{S}$$
 черный бурый

$$FeCO_3 + O_2 + H_2O \rightarrow Fe(OH)_3 \downarrow + CO_2 \uparrow$$
 белый

В водных растворах – гидролиз

1 ступень 
$$Me^{2+} + HOH ≠ MeOH^{+} + H^{+}$$
  $pH < 7$  кислая среда

#### комплексообразователи

$$K.Y. = 4, 6$$

анионные 
$$[Fe(CN)_6]^{4-}$$
 катионные  $[Ni(NH_3)_6]^{2+}$   $[Fe(H_2O)_6]^{2+}$ 

# Окраска комплексов Со<sup>2+</sup> зависит от КЧ

$$[Co(H_2O)_6]^{2+} + 4Cl^- = [CoCl_4]^{2-} + 6H_2O$$
 розовый синий

$$Me_2O_3$$
 $Me(OH)_3$ 

амфотерные

 $Ni_2O_3$  — существование не подтверждено устойчивы  $Fe_2O_3$  и  $Fe(OH)_3$ 

амфотерность – реакции со щелочами

$$Fe_2O_3 + NaOH \xrightarrow{t} NaFeO_2 + H_2O$$
  
 $Fe(OH)_3$  феррит натрия

$$Fe(OH)_3 \equiv H_3FeO_3 = HFeO_2 + H_2O$$
 орто- мета- железистая кислота

Известны ферриты

В щелочной – устойчивы

KFeO<sub>2</sub>
LiFeO<sub>2</sub>
Pb(FeO<sub>2</sub>)<sub>2</sub>
Mn(FeO<sub>2</sub>)<sub>2</sub>

В кислой среде разлагаются

$$NaFeO_2 + HCl \rightarrow NaCl + FeCl_3 + 2H_2O$$

## Ферриты гидролизуются необратимо

$${\rm FeO}_2^- + 2{\rm H}_2{\rm O} \to {\rm Fe(OH)}_3 + {\rm OH}^ {\rm pH} > 7$$
 щелочная среда

В водных растворах — гидролиз 
$$Fe^{3+}$$
  
1 ступень  $Fe^{2+} + HOH \Rightarrow FeOH^{2+} + H^+$   
 $pH < 7$  кислая среда

# Окислительно-восстановительные свойства

Fe<sup>3+</sup> – окисл.-восст. двойственность

окислитель 
$$Fe^{3+} + 1\bar{e} \rightarrow Fe^{2+}$$

$$\varphi_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{0} = +0,77\text{B}$$

#### восстановитель

$$Fe^{3+} + 8OH^{-} - 3\bar{e} \rightarrow FeO_{4}^{2-} + 4H_{2}O$$
 феррат-ион

#### очень неустойчивы

заметные окислительные свойства

$$Co^{+3}(OH)_3 + HCl(конц.) = Co^{+2}Cl_2 + Cl_2 \uparrow + H_2O$$
  
Ni(OH)<sub>3</sub> NiCl<sub>2</sub>

$$Co^{+3}(OH)_3 + H_2SO_4($$
конц. $) = Co^{+2}SO_4 + O_2 \uparrow + H_2O$   $Ni(OH)_3$   $NiSO_4$ 

$$H_2SO_4 + 2H_2O - 4\bar{e} = SO_4^{2-} + O_2 + 6H^+$$

$$Co^{3+}$$
,  $Ni^{3+}$  — окислители

# Для Co<sup>3+</sup> известны

$$\begin{array}{ll}
\operatorname{CoF}_{3} & \operatorname{Co_2(SO_4)_3} \\
\operatorname{CoBr}_{3} & \operatorname{Co(NO_3)_3} \\
\operatorname{CoI}_{3} & \end{array}$$

- почти все они крайне неустойчивы
- сильные окислительные свойства

## Комплексные соединения Со<sup>3+</sup>

- чрезвычайно устойчивы
- многообразны

**Например:** аммиакат  $[Co(NH_3)_6]Cl_3$  устойчив даже в сильнокислой среде

для аммиакатов большинства Ме:

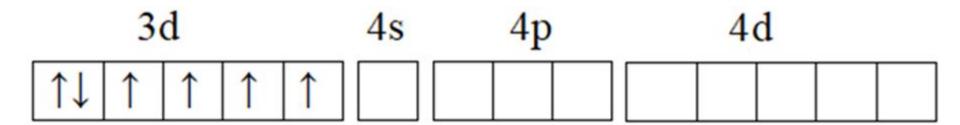
$$[Ni(NH_3)_6]Cl_2 + 3H_2SO_4 = NiCl_2 + 3(NH_4)_2SO_4$$

Самопроизвольное образование комплексов Со<sup>3+</sup> за счет окисления соединений Со<sup>2+</sup>  $CoCl_2 \xrightarrow{NaNO_2 + CH_3COOH}$  $\rightarrow \text{Na}_3[\text{Co(NO}_2)_6] + \text{NO} + \text{NaCl} +$ +CH<sub>3</sub>COONa+ H<sub>2</sub>O NaCN+H<sub>2</sub>O

наглядная демонстрация уникальной устойчивости комплексов Co<sup>3+</sup>

 $\rightarrow \text{Na}_3[\text{Co(CN)}_6] + \text{H}_2\uparrow + \text{NaCl} + \text{NaOH}$ 

## Теория кристаллического поля (ТКП) 1929 г.

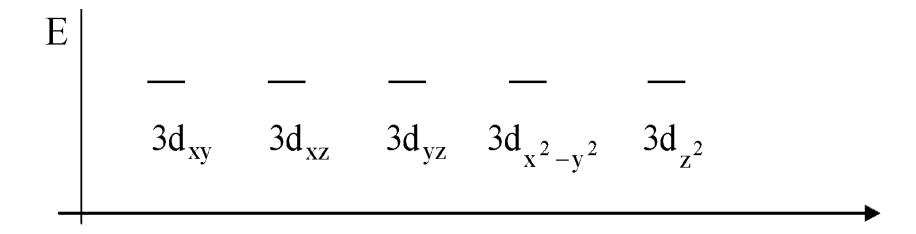

- 1) между комплексообразователем и лигандами ионные силы (электростатическое взаимодействие)
- 2) лиганд источник заряда (источник кристаллического поля)
- 1) принудительное уплотнение электронов и высвобождение АО под действием поля лигандов

ТКП применима только для d-элементов

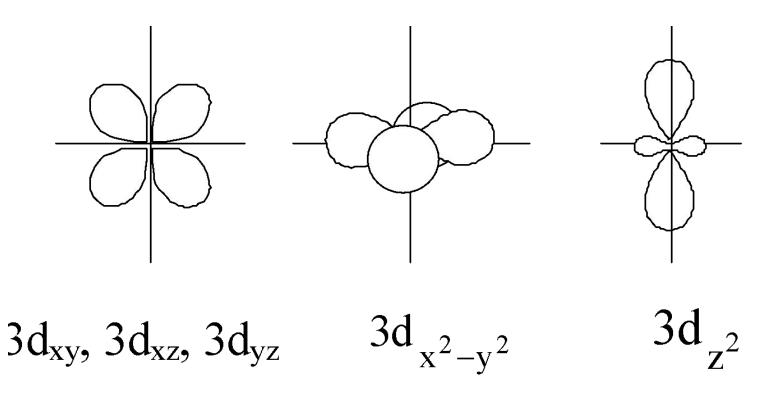
#### Пример

цианидные комплексы с октаэдрическим расположением лигандов (КЧ = 6)

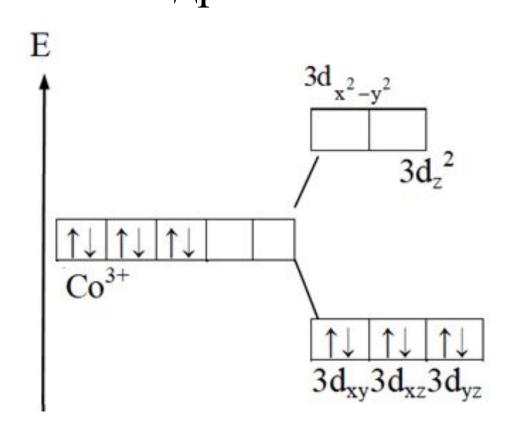
## свободный ион Co<sup>3+</sup>




# ион Со<sup>3+</sup> в окружении лигандов



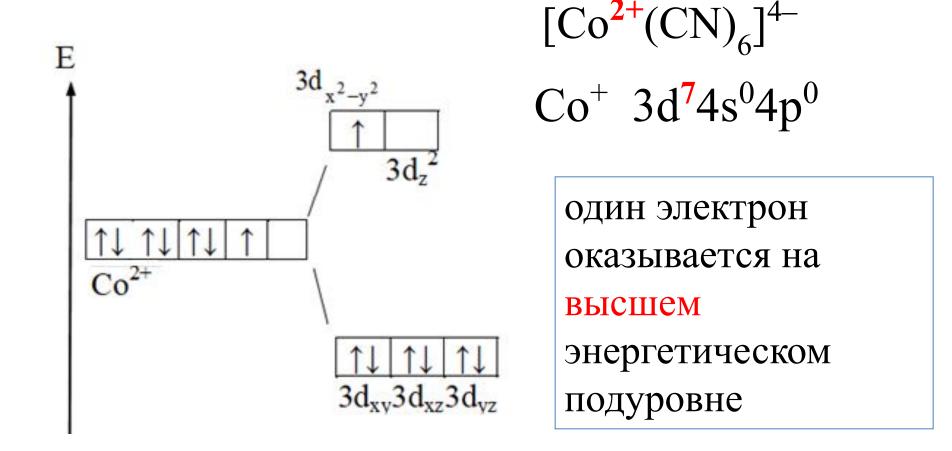

6 вакантных AO гибридизация  $d^2sp^3$  KY = 6 октаэдрическая координация


### вырожденное состояние атомных орбиталей 3d-подуровня атома Со



#### формы и ориентации 3d-орбиталей




## Расщепление энергетических уровней в октаэдрическом поле:



$$[\text{Co}^{3+}(\text{CN})_6]^{3-}$$
  
 $\text{Co}^{+3} 3\text{d}^64\text{s}^04\text{p}^0$ 

6 валентных 3dэлектронов заполняют низший энергетический подуровень

отсутствие неспаренных электронов стабилизирует систему



неспаренный электрон дестабилизирует систему исключительная реакционная активность комплекса:

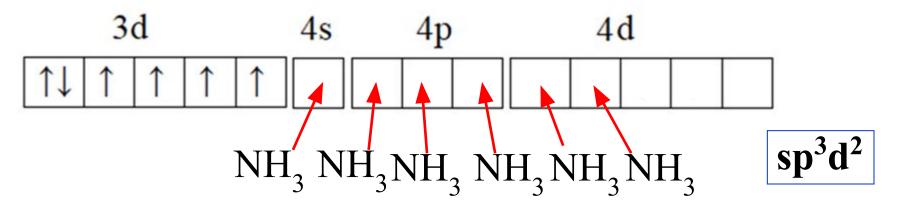
$$[\text{Co(CN)}_6]^{4-} - 1\bar{e} = [\text{Co(CN)}_6]^{3-}$$

при растворении в воде – бурная реакция

$$2K_{4}[Co^{2+}(CN)_{6}] + 2H_{2}O =$$

$$= 2K_{3}[Co^{3+}(CN)_{6}] + H_{2}\uparrow + 2KOH$$

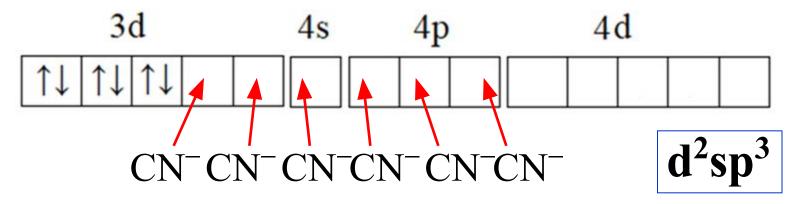
$$[\text{Co(CN)}_6]^{4-} \rightleftharpoons \text{Co}^{2+} + 6\text{CN}^- \text{ K}_H = 1 \cdot 10^{-19}$$
  
 $[\text{Co(CN)}_6]^{3-} \rightleftharpoons \text{Co}^{3+} + 6\text{CN}^- \text{ K}_H = 1 \cdot 10^{-64}$ 


#### Сила кристаллического поля зависит от природы L

$$[Co(NH_3)_6]^{3+}$$

$$NH_3$$
 – поле слабое  $\Rightarrow$ 

принудительного уплотнения Со<sup>3+</sup> не происходит


свободный ион Со<sup>3+</sup>



4 неспаренных  $\bar{e}\bar{e}$  с одинаковыми спинами комплекс  $[Co(NH_3)_6]^{3-}$  - высокоспиновый

### $[Co(CN)_6]^{3-}$ - все электроны спаренные

ион Со<sup>3+</sup> в окружении лигандов



нарушается правило Гунда  $\Sigma m_s \to max$   $\Sigma m_s = 0$  низкоспиновый комплекс (диамагнитный)

# Устойчивость высокоспиновых комплексов $Co^{3+}$ выше, чем $Co^{2+}$

$$[\text{Co(NH}_3)_6]^{2+}$$
  $K_H = 2,45 \cdot 10^{-4}$   
 $[\text{Co(NH}_3)_6]^{3+}$   $K_H = 4,57 \cdot 10^{-33}$ 

Для никеля 
$$K.Ч. = 6, 5, 4$$

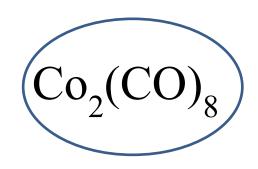
 $[Ni(H_2O)_6]^{2+}$  ярко-зеленый

аналогичный цвет  $NiSO_4 \cdot 6 H_2O$ 

 $[Ni(NH_3)_6]^{2+}$  сине-фиолетовый

цвет зависит от состава лиганда

$$K.Ч. = 4$$
 анионные  $[NiCl_4]^{2-}$   $[Ni(CN)_4]^{2-}$ 


#### Реакция Чугаева

диметилглиоксимат Ni(II) розовый осадок

#### Карбонилы

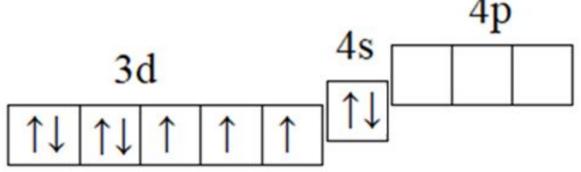
#### лиганды – молекулы СО

Fe(CO)<sub>5</sub>

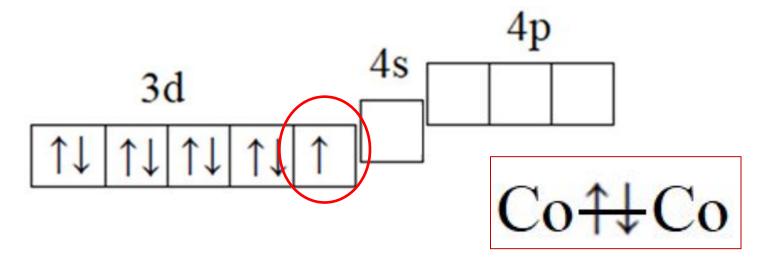


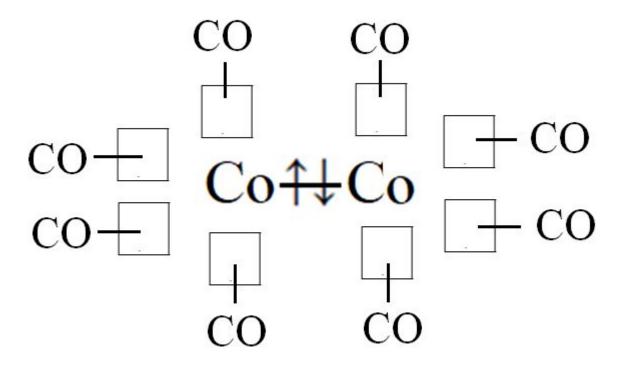
 $Ni(CO)_4$ 

двухядерный


 $Fe \\ 3d^64s^2$ 

Co  $3d^74s^2$ 


 $Ni \\ 3d^8 4s^2$ 


нечетное число ёё

атом Со без поля лиганда



#### СО имеет мощное поле лиганда





**C.O.** +6  ${\bf FeO_3}$  – кислотный реализуется в феррат-ионе  ${\bf FeO_4}^{2-}$ 

 $\Phi$ ерраты — соли несуществующей  $H_2FeO_4$  железная кислота

Получение в сильнощелочной среде — окисление Fe,  $Fe_2O_3$ ,  $Fe(OH)_3$ 

$$\text{Fe} + 8\text{OH}^- - 6\bar{\text{e}} \rightarrow \text{FeO}_4^{2-} + 4\text{H}_2\text{O}$$

#### В кислой и нейтральной среде

$$FeO_4^{2-}$$
- сильные окислители

$$\text{FeO}_4^{2-} + 8\text{H}^+ + 3\bar{\text{e}} \rightarrow \text{Fe}^{3+} + 4\text{H}_2\text{O}$$
  
 $\phi^0 = +1,90 \text{ B}$ 

превосходят перманганаты

$$|\varphi_{\text{MnO}_{4}^{-}/\text{Mn}^{2+}}^{0}| = +1,51B$$

#### Нейтральная среда

$$FeO_4^{2-} + 2H_2O + 3\bar{e} \rightarrow FeO_2^{-} + 4OH^{-}$$
  
 $\phi^0 = +0.90 \text{ B}$ 

$$|\varphi_{\text{MnO}_{4}/\text{MnO}_{2}}^{0}| = +0.58 \text{ B}$$

- устойчивы в чистом виде или в ОН-среде
- разлагаются в  $H^+$ ,  $H_2O$  и нагревании

$$Na_{2}FeO_{4}+H_{2}SO_{4} = Na_{2}SO_{4}+Fe_{2}(SO_{4})_{3}+O_{2}\uparrow +H_{2}O_{4}$$

$$K_2FeO_4 + H_2O + KI = KFeO_2 + I_2 + KOH$$

$$Na_2FeO_4 + NH_3 = Fe_2O_3 + N_2\uparrow + NaOH + H_2O$$

перферраты