

ЭНЕРГЕТИЧЕСКИЙ И ПЛАСТИЧЕСКИЙ ОБМЕНЫ ЧЕЛОВЕКА И СРЕДЫ

ВИТАМИНЫ И МИНЕРАЛЬН ЫЕ ВЕЩЕСТВА

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИЕЙ (ОВЭ)

Все анатомические структуры на всех уровнях имеют границы (например, ядерная мембрана, цитолеммо-клеточная мембрана, капсулы органов и сам организм отделен от внешней среды кожей)

Между внутренними и наружными средами наблюдается разность в концентрации веществ, давлении, температуре, электропотенциале.

Вследствие этого между организмом и внешней средой происходит непрерывный обмен веществами, сопровождающийся энергетическими процессами.

Обмен веществ и энергий называется **метаболизмом**

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН (ВИДЫ ЭНЕРГИЙ)

Химическая энергия пищи

(выделяется при окислении питательных

веществ)

Механическая энергия

(расходуется при мышечных сокращениях)

Химическая энергия

(запасается клетками в виде АТФ и расходуется при биосинтезе)

Электрическая энергия

(Используется в нервно мышечной передаче)

Тепловая энергия

(расходуется на поддержание нормальной температуры тела)

КЛАССИФИКАЦИЯ

В зависимеети от руткций различают вещества:

- Передающие наследственную информацию это нуклеиновые и белки (гестоны)
- Вещества, участвующие и регулирующие метаболизм (белки, гормоны, ферменты, медиаторы и т.д.)
- Вещества, выполняющие строительную функцию (вода, молекулы жира, МКВ)
- Вещества, выполняющие энергетическую функцию (глюкоза, углеводы, БЖУ)

Функции веществ совпадают с функциями организма.

В зависимости от расположения по отношению к мембране клетки различают:

- Внутриклеточные;
- Внеклеточные (межклеточные) в-ва

В зависимости от химического строения различают: Неорганические вещества (вода, минеральные вещества) Органические вещества (мономеры – аминокислоты, жирные кислоты, простые сахара – глюкоза, полимеры – БЖУ, нуклеиновые кислоты,

МОЛЕКУЛЯРНАЯ Источники веществ дмизиков веществ веществ дмизиков веществ дмизиков веществ ве

организма – вода, пища и воздух.

Поглощаемые питательные веществ в ЖКТ расщепляются до мономеров, затем всасываются в кровь и захватываются клетками. В зависимости от состояния клетки, мономеры или расщепляются для извлечения из них энергии, или используются для синтеза собственных полимеров клетки.

Таким образом, метаболизм ОВЭ складывается из двух

МЕТАБОЛИ

АНАБОЛИЗМ **З IV** Пластический обмен АССИМИЛЯЦИЯ

Представляет собой синтез собственных биомолекул (полимеров) из мономеров. Сопровождается поглощением энергии (выделяемой при катаболизме). Характер энергии механический, электрический, химический и тепловой. Наблюдается в период роста организма или выздоровления. Структурирует, создает различные формы

КАТАБОЛИЗМ Энергетический обмен ДИССИМИЛЯЦИЯ

Представляет собой анализ, расщепление чужеродных биомолекул (полимеров) до мономеров в ЖКТ и неорганических веществ в клетках. Сопровождается выделением энергии Характер химический. Наблюдается в старении, при голодании, болезни и смерти Деструктурирует, смешивает, создает тождества, хаос

ОБМЕН

ОБЩИЙ ОБМЕН ЭНЕРГИИ = ОСНОВНОЙ ОБМЕН + РАБОЧАЯ ПРИБАВКА

Основной обмен характеризует интенсивность процессов окисления, свойственных данному организму. В условиях основного обмена энергия расходуется на поддержание жизнедеятельности организма, работу внутренних органов (сердце, дыхательный аппарат и др.), а также на поддержание температуры тела. Величина его зависит от пола, возраста, массы тела и роста. У женщин основной обмен на 5—10% ниже, чем у мужчин тех же массы и роста. У детей он выше, чем у взрослых. К старости основной обмен снижается.

Повышение энергетического обмена сверх основного обмена называют рабочей прибавкой. Факторами, повышающими расход энергии, являются прием пищи, низкая или высокая (выше 30°С) внешняя темпера тура и мышечная работа.

Основной обмен определяется при нахождении человека в состоянии возможного полного мышечного покоя: лежа с расслабленной мускулатурой, натощак (через 14 ч после последнего приема пищи), при температуре комфорта (18—22°C). При этом расход энергии составляет

примерно 1700 ккап в сутки

РАСПРЕДЕЛЕНИЕ

Количество затраниваемой энергии любым организмом зависит от 2х факторов:

1. Анатомический – связан с площадью тела, т.е. расход энергии

пропорционален площади тела

2. Физиологический – обусловлен физиологическими особенностями организма, а также его состоянием

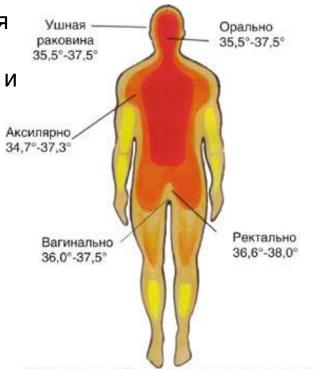
ТЕРМОРЕГУЛЯЦИ

Поддержание температуры тела в пределах физиологической

температура тела — показатель теплового состояния организма человека, который отражает соотношение между выработкой тепла различных органов и тканей и теплообменом между ними и внешней средой.

Температура тела зависит от:

- возраста;
- времени суток;
- воздействие на организм окружающей среды;
- состояния здоровья;
- беременности;
- особенностей организма;
- других факторов, которые еще не выяснены.


Состояния температурного режима тела:

Гипотермия. Температура тела опускается ниже 36°С;

Нормальная температура. Температура тела находится в промежутке от 36°C до 37°C;

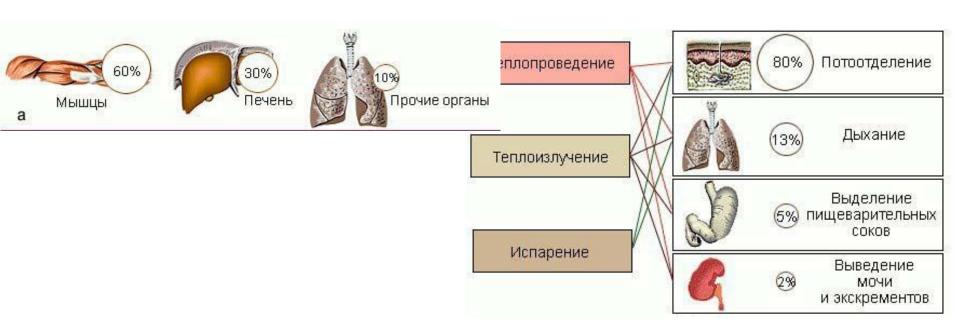
Гипертермия. Температура тела поднимается выше 37°С;

Лихорадка. Повышение температуры тела, которое в отличии от гипотермии происходит в условиях сохранения механизмов терморегуляции организма.

Нормальный диапазон температуры

МЕХАНИЗМЫ ТЕРМОРЕГУЛЯЦИИ

ТЕПЛОПРОДУКЦИЯ


Включается при гипотермии тела, возникающей при понижении температуры окружающей среды ниже +20 °C.

Теплопродукция связана, в основном, с интенсивностью химических реакций, протекающих, в большей степени, в печени и в мышцах

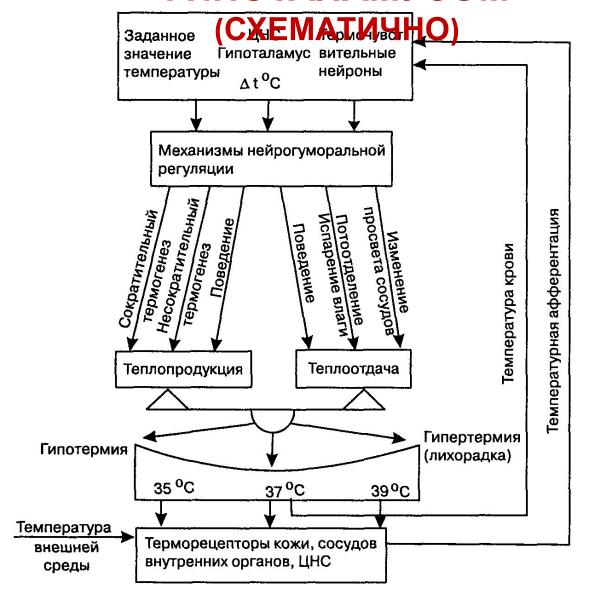
ТЕПЛООТДАЧА

Включается при гипертермии тела, возникающей при повышении температуры окружающей среды выше +22 °C.

Регулируется, в основном, физическими процессами – теплопроведением, конвекцией, теплоизлучением, испарением

ТЕПЛОПРОДУКЦ ИЯ:

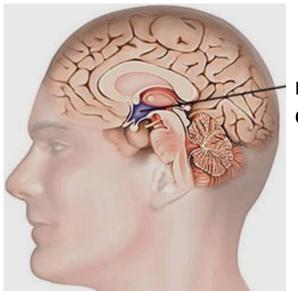
- 1. Рефлекторно возбуждается гипоталамус. Он стимулирует гипофиз. Гипофиз стимулирует щитовидную железу и надпочечники, которые усиливают обмен веществ и теплообразование. Главный источник тепла гликоген печени.
- 2. В скелетных мышцах происходит несократительный термогенез (мышечная дрожь). При этом, так как внешняя работа не совершается, почти вся метаболическая энергия в мышце высвобождается в виде тепла.
- 3. Активизируется липолиз в жировой ткани (стимулируется симпатической нервной системой). В кровоток выделяются и в последующем окисляются свободные жирные кислоты с выделением большого количества тепла.
- 4. Изменяется кровоток происходит перераспределение крови от поверхности тела к внутренним органам. Рефлекторно артериолы и капилляры кожи суживаются, кожа становится бледной, количество крови, протекающее через сосуды кожи, уменьшается, снижается


ТЕПЛООТДА

- 1. Теплопроведение отдача тепла через предметы, конвекция передача тепла через воздух (15%);
- 2. Теплоизлучение отдача тепла с помощью инфракрасного излучения (66%);
- 3. Испарение отдача тепла через потоотделение (19%). При комнатной температуре испаряется до 500 мл пота в сутки. При высокой температуре среды в сочетании с интенсивной работой может испариться до 12 л пота в сутки.
- 4. Изменяется кровоток происходит перераспределение крови от внутренних органов к поверхности тела. Гиперемия кожи кожа становится теплой и красной.
- 5. Снижается глубина дыхания и увеличивается его частота Возрастацие вентиляции мертвого пространства приводит к увеличению испаряемости воды в виде пара.
- 6. Изменение поведения поиск прохлады.

СХЕМА МЕХАНИЗМА

МЕХАНИЗМЫ ТЕРМОРЕГУЛЯЦИИ ГИПОТАЛАМУСОМ


МЕХАНИЗМЫ ТЕРМОРЕГУЛЯЦИИ ГИПОТАЛАМУСОМ

НЕРВНЫЙ МЕХАНИЗМ

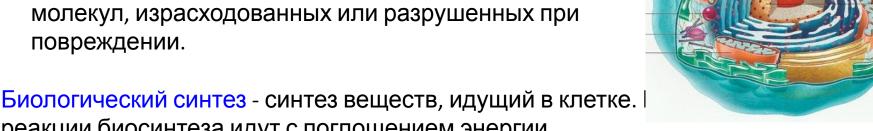
Безусловнорефлекторный. Передние отделы гипоталамуса (центр теплоотдачи) регулируют физическую терморегуляцию, а задние – центр теплообразования – химическую. Эфферентными нервами центра являются, главным образом, эфферентные волокна. Условнорефлекторный механизм – через кору головного мозга

ГУМОРАЛЬНЫЙ МЕХАНИЗМ

Гормоны щитовидной железы повышают интенсивность обменных процессов и теплообразование. Гормоны надпочечников усиливают окислительные процессы (увеличивают теплообразование) и суживают сосуды кожи (уменьшается теплоотдача)

гипоталаму

ПЛАСТИЧЕСКИЙ


ОБМЕН — совокупность реакций синтеза органических веществ в клетке с

функции пластического обмена: обеспечение клетки строительным материалом для создания клеточных структур; органическими веществами, которые используются в энергетическом обмене.

Суть пластического обмена - поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакция синтеза в клетке.

- Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные.
- Синтезируются белки, сложные углеводы, жиры, нуклеиновые кислоты. Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ.
- Постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении.

БЕЛК

Молекула БЕЛКА

Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота

Функции белков:

1) Защитная

интерферон усиленно синтезируется в организме при вирусной инфекции;

2) структурная

коллаген входит в состав тканей, участвует в образовании рубца;

Двигательная

миозин участвует в сокращении мышц;

4) Запасная

например, альбумины яйца;

5) Транспортная

гемоглобин эритроцитов переносит питательные вещества и продукты обмена;

6) Рецепторная

белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток;

7) Регуляторная

регуляторные белки определяют активность генов;

8) Гуморальная

белки-гормоны участвуют в гуморальной регуляции инсулин регулирует уровень сахара в крови;

9) Каталитическая

белки-ферменты катализируют все химические реакции в организме;

10) Энергетическая

при распаде 1 г белка выделяется 17 кДж энергии.

СХЕМА ОБМЕНА БЕЛКОВ

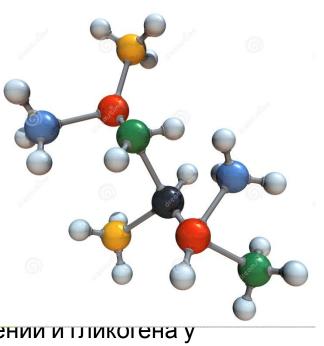
УГЛЕВОД

Это моно- и полимеры, в состав которых входит угле водород и кислород в соотнешении 1:2:1.

Функции углеводов:

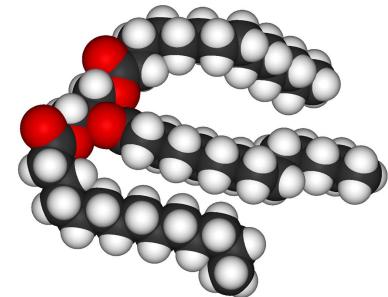
1) Энергетическая

при распаде 1 г углеводов выделяется 17,6 кДж энер


2) Структурная

целлюлоза, входящая в состав клеточной стенки у р

3) **Запасающая**


запас питательных веществ в виде крахмала у растении и гликогена у

ЖИР

Жиры (липиды) могут быть простыми исложным Молекулы простых липидов состоят из трехатом спирта глицерина и трех остатков жирных кисло Сложные липиды являются соединениями прослипидов с белками и углеводами.

Функции липидов:

1) **Энергетическая** при распаде 1 г липидов образуется 38,9 кДж энє

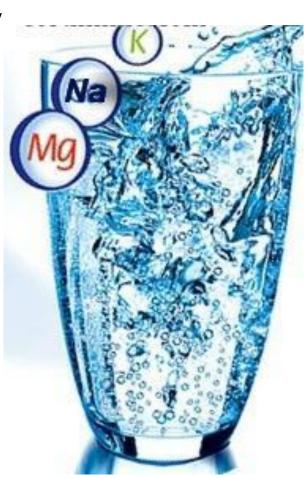
2) Структурная

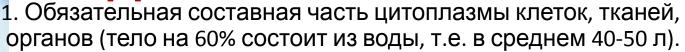
фосфолипиды клеточных мембран, образующие липидный бислой;

- 3) Запасающая
- запас питательных веществ в подкожной клетчатке и других органах;
- 4) Защитная

подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений;

- 5) Регуляторная
- гормоны и витамины, содержащие липиды, регулируют обмен веществ;
- 6) **Теплоизолирующая** подкожная клетчатка сохраняет тепло.


СХЕМА ОБМЕНАЖИРОВ


ОБМЕН ВОДЫ И МИНЕРАЛЬНЫХ

Водко-соверы обмен – совокупность процессов распределения воды и минеральных веществ между пространствами организма и внешней средой.

- Поддержание постоянства осмотического, обменного и ионного равновесия вне и внутриклеточных жидкостей, возможно с помощью рефлекторных органов.
- Изменение потребности воды и солей, избыточная потеря этих веществ сопровождается изменением состава внутренней среды и воспринимается различными рецепторами.
- В результате информация, поступившая в ЦНС завершается тем, что к почке основному органу регулирующему водно-солевое равновесие, поступают нервные и гуморальные импульсы, приспосабливая ее работу к потребностям организма.

- 2. Растворитель и переносчик минеральных и питательных веществ, продуктов обмена.
- 3. Ослабляет трение между соприкасаемыми поверхностями в теле человека.
 - 4. Основной компонент состава плазмы лимфы, тканевой жидкости.
 - 5. Регуляции температуры тела.
 - 6. Гибкость и эластичность тканей.
 - 7. Входит в состав пищеварительных соков.

Суточная потребность взрослого человека в состоянии покоя

35-40 мл на каждый кг массы тела.

Эта вода поступает:

- в виде питья 1-1,1 л
- спищей 1-1,1 л
- образуется в организме в результате химических превращений питательных веществ (0,3-0,35 л).

Основные органы, удаляюще воду из организма:

- почки (1,5 л в сутки)
- потовые железы (0,5 л и более)
- легкие (0,35 л)
- кишечник (с калом 100-150 мл).

ВОДНЫЙ БАЛАНС соотношение между поступившей и выведенной

Норма – приход покрывает расход. водой

Потеря 10% воды приводит к обезвоживанию, 20% - наступает смерть.

При недостатке воды в организме наблюдается перемещение жидкости из клеток в межклеточное пространство, а затем в сосудистое русло.

НАРУШЕНИЕ ВОДНОГО ОБМЕНА

Отеки

(накопление жидкости в тканях)

Водянка

(скопление жидкости в полостях

Транссудат – накопленная жидкость (прозрачная, содержит 2-3% белка).

Термины:

Анасарка – отек кожи и подкожной клетчатки.

Асцит – водянка полости брюшины.

Гидроторакс – водянка плевральной полости.

Гидроперикард – водянка полости сердечной сумки.

Гидроцем – водянка влагалищной оболочки яичка.

В зависимости от причин и механизмов развиваются различные сердечные или застойные отеки, почечные отеки, токсические, травматические и т.д.

МИНЕРАЛЬНЫЙ

Минеральные веществой в организм с пищевыми продуктами и водой.

Исключение: поваренная соль, которая добавляется к пище специально.

Всего в организме человека обнаружено 70 химических элементов, из которых 43 считаются незаменимыми.

Некоторых солей необходимо много – макроэлементы, а некоторых необходимо незначительное количество – ми Для поддержания осмотического давления важна концентрация всех растворенных в воде минеральных и органических ионов.

Осуществление ряда физиологических процессов, как, например, возбуждения, синаптической передачи, сокращения мышц невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na+, K+, Ca++ и других минеральных ионов. Поскольку их синтез в организме не осуществляется, все они должны поступать в организм с пищей и питьем.

	ОГИЧЕСКАЯ РОЛЬ ВАЖНЕЙШИХ МИНЕРАЛЬНЫХ И ЕМЕНТОВ Физиологическая роль, суточная потребность	ОНОВ И Источник
Натрий	Содержится в больших количествах во внеклеточной жидкости и плазме крови. Играет важнейшую роль: в процессах возбуждения, определении величины осмотического давления, распределении и выведении воды из организма; участвует в функции бикарбонатной буферной системы. Суточная потребность 2-3 г, а в виде NaCl — 5 г.	Поваренная соль, в составе растительной и животной пищи, в жидкостях, потребляемых при питье.
Кальций	Один из наиболее важных минеральных элементов	Молоко и

Кальций Один из наиболее важных минеральных элементов Молоко и организма. Выполняет функцию структурного молочные		Суточная потреоность 2-3 г, а в виде NaCi — 5 г.	питье.
	Кальций	организма. Выполняет функцию структурного компонента в тканях зубов и костей. В этих тканях содержится около 99% от общего количества Са*+ в организме. Необходим для осуществления процессов свертывания крови, возбуждения клеток, синаптической передачи, сокращения мышц, вторичный посредник в регуляции внутриклеточного	

Потребность при Калий Содержится преимущественно внутри клеток, а также в жидкостях внутренней среды. Играет нормальном важную роль в процессах реполяризации после питании возбуждения в нервных волокнах, сокращении удовлетворяется мышц, в том числе миокарда. Суточная потребность за счет пищевого калия. Наиболее 2-3 г. богаты калием овощи, мясо, сухофрукты, орехи.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ВАЖНЕЙШИХ МИНЕРАЛЬНЫХ ИОНОВ И МИКРОЭЛЕМЕНТОВ

Элемент	Физиологическая роль, суточная потреоность	ИСТОЧНИК
Хлор	Содержится как во внеклеточной, так и во внутриклеточной жидкости. Играет роль в процессах возбуждения и торможения, в синаптической передаче, образовании соляной кислоты желудочного сока. Суточная потребность 3-5 г	Поваренная соль, в составе растительной и животной пищи; в жидкостях, потребляемых при питье.
Фосфор	Около 80% в виде минеральных веществ содержится в костях и зубах. В составе фосфолипидов входит в структуру клеточных мембран, липопротеидов. В составе АТФ и ее производных играет большую роль в метаболизме, осуществлении важнейших физиологических процессов. Суточная потребность около 0,7-0,8 г	Пищевые продукты, в особенности молоко, мясо, рыба, яйца, орехи, злаки.
Железо	Около 66% содержится в гемоглобине крови. Содержится в скелетных мышцах, печени, селезенке, костном мозге, в составе ферментов. Основная функция — связывание кислорода. Суточная потребность 10-15 мг	Пищевые продукты, в особенности мясо, печень, свежая рыба, яйца, сухофрукты, орехи.
Кобальт	Входит в состав витамина В 2 и необходим для нормального осуществления эритропоэза. Суточная потребность точно не известна, предположительно	Печень.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ВАЖНЕЙШИХ МИНЕРАЛЬНЫХ ИОНОВ И

_МИКРС	ЭЛЕМЕНТОВ	
Элеме нт	Физиологическая роль, суточная потребность	Источник
	Важнейший компонент гормонов и предшественников гормонов щитовидной железы. Суточная потребность 0,15-0,3 мг	Йодированная поваренная соль, морепродукты, рыбий жир, овощи, выращенные на обогащенных йодом почвах.
Медь	Содержится в печени, селезенке. Играет роль в процессах всасывания железа, образовании гемоглобина, пигментации.	Пищевые продукты, в особенности яйца, печень, почки, рыба, шпинат, сухие

овощи, виноград.

Пищевые продукты,

пасты и растворы.

фторированная NaCl,

фторированные зубные

Мясо, молоко, целые зерна.

Суточная потребность 2-5 мг Фтор Содержится в зубных тканях и необходим для сохранения их целостности. Суточная потребность 1 мг. При пятикратной передозировке токсичен.

Магний Содержится в костной ткани, необходим для ее образования, а также для нормального осуществления функции мышечной и

нервной тканей. Необходим для многих МГ

коферментов. Суточная потребность 250-350 Cepa Входит в состав аминокислот, белков Пищевые продукты, в (инсулин) и витаминов (В,, Н), суточная особенности мясо, печень, потребность предположительно равна 1 г рыба, яйца.

Цинк Важный компонент ряда ферментов. Пищевые продукты: крабы, Необходим для нормального роста. Суточная мясо, бобы, яичный желток. $\mathsf{DOTDE}\mathsf{DHOCTL} 10-15 \mathsf{MC}$

ВИТАМИНЫ

 группа разнородных по химической природе веществ, не синтезируемых или синтезируемых в недостаточных количествах в организме, но необходимых для нормального осуществления обмена веществ, роста, развития организма и поддержания здоровья.

Эти вещества не являются непосредственными источниками энергии и не выполняют пластических функций.

Витамины являются составными компонентами ферментных систем и играют роль *катализаторов* в обменных процессах.

ОСНОВНЫЕ ИСТОЧНИКИ И ФИЗИОЛОГИЧЕСКАЯ РОЛЬ					
BUTAM	Суточн ая потреб н.	Основные источники	Физиологическая роль	Признаки недостаточности	
А* (ретинол)	мг В- ′	рыба, яйца,	Необходим для синтеза зрительного пигмента родопсина; оказывает влияние на процессы роста, развития и размножения	Нарушаются функции сумеречного зрения; роста, размножения, пролиферации и ороговения эпителия. Нарушается состояние роговицы глаз (ксерофтальмия и кератомаляция).	
Д **(кальци- ферол)	2,5 МКГ	Печень и мясо млекопита- ющих, печень рыб, яйца	кальция и для обмена	Недостаточное поступление в детском возрасте приводит к развитию рахита, что проявляется нарушением окостенения и роста костей, их декальцификацией и остеомаляцией	

тракта и печени

PP** 150 мг Мясо, Участвует в процессах клеточного (никотипечень, дыхания (переносе новая почки, рыба, кислота) водорода и дрожжи электронов); регуляции секреторной и моторной функций желудочно-кишечного

тей, Воспаление кожи (пеллагра), расстройства желудочно-кишечного тракта (понос).

ОСНОВНЫЕ ИСТОЧНИКИ И ФИЗИОЛОГИЧЕСКАЯ РОЛЬ **ВИТАМИНОВ**

Витамин	Суточная потребност ь взрослого человека	Основные источники	Физиологическая роль	Признаки недостаточности
K	до 1 мг	Зеленые листья овощей, печень. Синтезируется микрофлорой кишечника	Участвует в синтезе факторов свертывания крови, протромбина и др.	Замедление свертывания крови, спонтанные кровотечения.
Е (токофе- ролы)	10-12 мг и дополни- тельно 0,6 на 1 г ненасыщен ных жирных кислот	Растительные масла, зеленые листья ово щей, яйца	Антиоксидант	Четко определенных симптомов недостаточности у человека не описано
С (аскорби- новая кислота)	50-100 мг	Свежие фрукты и растения (особенно шиповник, черная смородина, цитрусовые)	Участвует в гидроксилировании , образовании коллагена, включении железа в ферритин. Повышает устойчивость организма к инфекциям	Развивается цинга, проявлением которой являются кровоточивость десен, мелкие кровоизлияния в коже, поражение стенок кровеносных сосудов и др.

ОСНОВНЫЕ ИСТОЧНИКИ И ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ВИТАМИНОВ					
Витамин	Суточная потребност ь взрослого человека	Основные источники	Физиологическая роль	Признаки недостаточности	
В ₁ (Тиамин)	1,4-2,4 мг	Целые зерна, бобы, печень, почки, отруби, дрожжи	Участвует в энергетическом обмене, принимая участие в декарбоксилировании (кофермент пируваткарбоксилазы)	Развивается заболевание бери- бери, сопровождающееся полиневритом, нарушением сердечной деятельности и функций желудочно-кишечного тракта	
Ъ	2 2 - 4 -	000000000	Dva=4= = ======	Попочиотиль	

			пируваткарбокси- лазы)	сердечной деятельности и функций желудочно- кишечного тракта
В ₂ (рибо- флавин)	2-3 мг	Зерновые бобы, печень, молоко, дрожжи, яйца	Входит в состав дыхательных флавиновых ферментов.	Поражение глаз, светобоязнь; поражение слизистой полости рта глоссит

электронов

ацетильной группы (КоА) при синтезе

стероидов и других

жирных кислот,

соединений

Перенос

Общая слабость,

головокружение,

нейромоторные

нарушения,

дерматиты,

поражения СЛИЗИСТЫХ 25252121

-NC еся Осуществляет рта, плоссит. перенос водорода и

Зерновые,

картофель,

печень, яйца,

бобы,

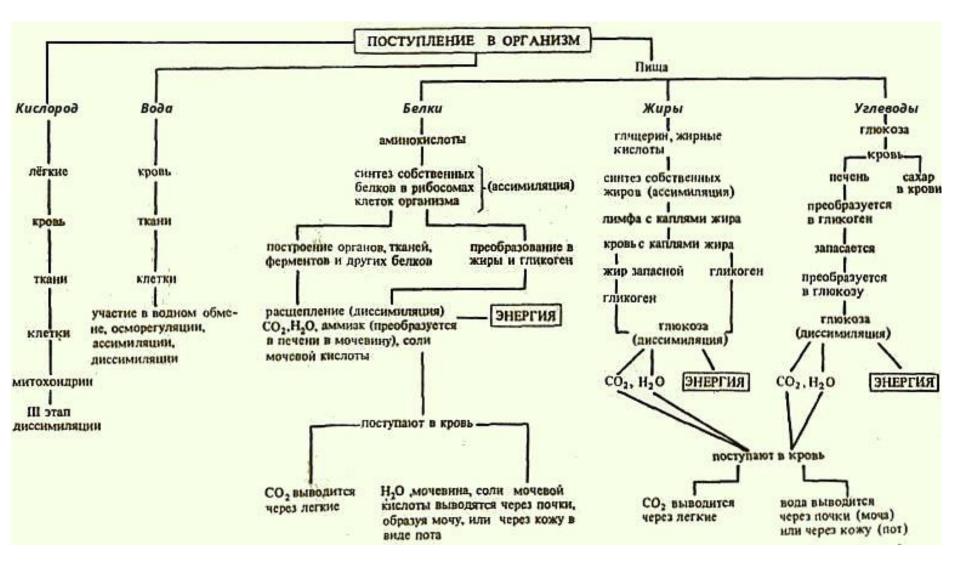
рыба

В (пантотеновая

кислота)

10 MF

ОСНОВНЫЕ ИСТОЧНИКИ И ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ВИТАМИНОВ


Витамин	Суточн. потреб	Основные источники	Физиологическая роль	Признаки недостаточности
В (пири- дбксин)	Н. 1,5-3 МГ	Зерно, бобы, мясо, печень, дрожжи, рыба. Синтезируетс я микрофлорой кишечника	Кофермент таких ферментных систем как трансаминазы, декарбоксилазы, дегидрагазы, десульфогидразы. Играет важную роль в обмене аминокислот, белков и жиров, а также в процессах кроветворения.	Повышенная раздражительность, судороги, гипохромная анемия
В _{.,} (цианк обала- мин)	2 МКГ	Печень, синтезируется микроорганиз мами	Компонент ферментов метаболизма нуклеиновых кислот и метилирования. Необходим для гемопоэза	Злокачественная, пернициозная анемия
Фолиевая кислота	400 мг	Зеленые листья овощей, мясо, печень, молоко, дрожжи; синтезируется микроорганиз мами	одноуглеродных фрагменов молекул. Стимулирует процессы	

ОСНОВНЫЕ ИСТОЧНИКИ И ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ВИТАМИНОВ

Витамин	Суточн потреб н.	. Основные источники	Физиологическая роль	Признаки недостаточности	
Н (биотин)	150-200 МКГ	Молоко, яичный желток, печень, синтезируется	Кофермент дезаминаз, карбоксилаз, карбоксилтранс- фераз.	Авитаминоз может развиваться при потреблении больших количеств сырого яичного белка (связывание на) и проявляется иным дерматитом.	

СХЕМА ОБМЕНА ВЕЩЕСТВ В ОРГАНИЗМЕ

