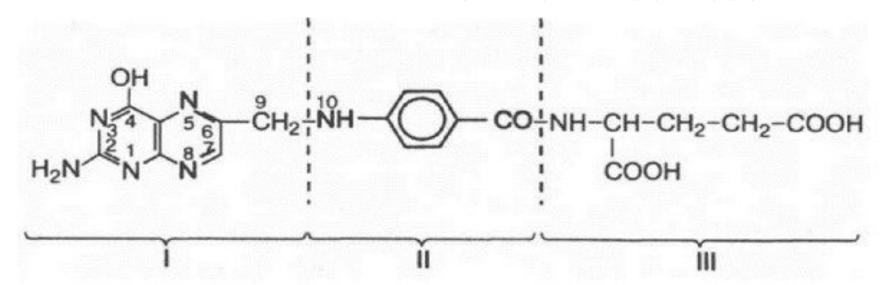


ЛЕКЦИЯ № 19

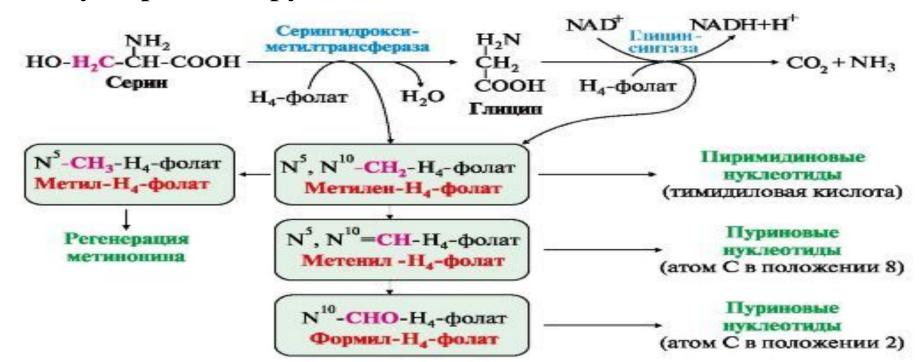

Обмен и функции **Витаминов В**₆, **В**₇, **В**₉, **В**₁₂, **С**.

Витамин В9 (фолиевая кислота)

• Фолиевая кислота состоит из трех структурных единиц: остатка 2-амино-4-окси-6-метилптеридина (I), парааминобензойной (II) и L-глутаминовой (III) кислот и имеет следующую структуру:

Фолиевая (птероилглутаминовая) кислота

Основные продукты, содержащие фолиевую кислоту


- свежие овощи и зелень (особенно морковь, помидоры, лук, салаты, капуста);
- мясные продукты (особенно печень и почки);
- яичный желток;
- сыр;

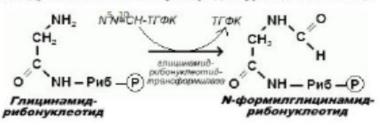
• микрофлорой кишечника человека может синтезироваться некоторое количество суточной потребности.

Участие фолиевой кислоты в метаболизме

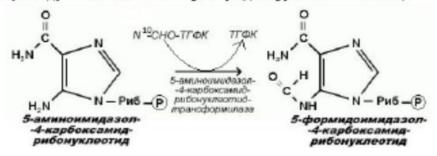
ТГФК (H_4 -фолат) образуется в печени из фолиевой кислоты (фолата) с участием ферментов фолатредуктазы и дигидрофолатредуктазы . Коферментом этих редуктаз является NADPH. Метиленовая группа - CH_2 - в молекуле метилен- H_4 -фолата может превращаться в другие одноуглеродные группы.

Недостаточность фолиевой кислоты (гиповитаминоз)

- 1. В развитых странах встречается редко. Основные причины развития: голодание, алкоголизм, беременность, длительный прием противосудоржных препаратов.
- 2. Яркая клиническая картина гиповитаминоза: мегалобластическая, пернициозная анемия Аддисона-Бирмера.
- 3. В крови: снижение эритроцитов гиперхромная анемия, мегалобластоз (появление недозрелых эритроцитов), макроцитоз, анизоцитоз. Лейкопения, многоядерные лейкоциты, тромбоцитопения.
- 4. В костном мозге: мегалобластоз (увеличение недозрелых эритроцитов), макроцитоз, фрагменты рахзрушенных эритроцитов.
- 5. Возможно обострение шизофрении, эпилепсии.

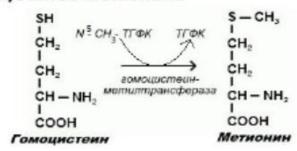

Врожденные нарушения обмена фолиевой кислоты

Название болезни	Причина нарушения	Признаки нарушения	Лечение
Фолатзави- симая мегабласти- ческая анемия	Врожденные нарушения синтеза рецепторов (всасывание) или фолатсвязывающего белка (транспорт)	Анемия	Мегавитами- нотерапия; Симптомати- ческое лечение
Мегабласти-ческая анемия	Дефект образования коферментов ФК — ДГФК — ТГФК	Анемия	Мегавитами- нотерапия; Симптомати- ческое лечение


Биохимические функции витаминаВ9 (Фолиевая кислота)

Кофермент - ТГФК

1)Внедрение 8-го атома углерода пуринового кольца

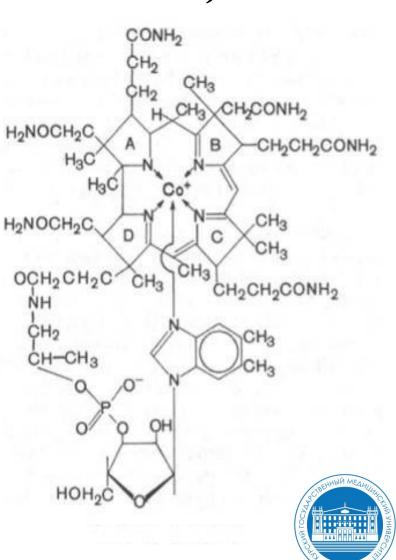


2)Внедрение 2-го атома углерода пуринового кольца

3)Синтез Глицина

4)Синтез Метионина

5)Синтез Дезокситимидинмонофосфата



Витамин В12 (цианокобаламин)

Витаминами В₁₂ называют группу кобальтсодержащих

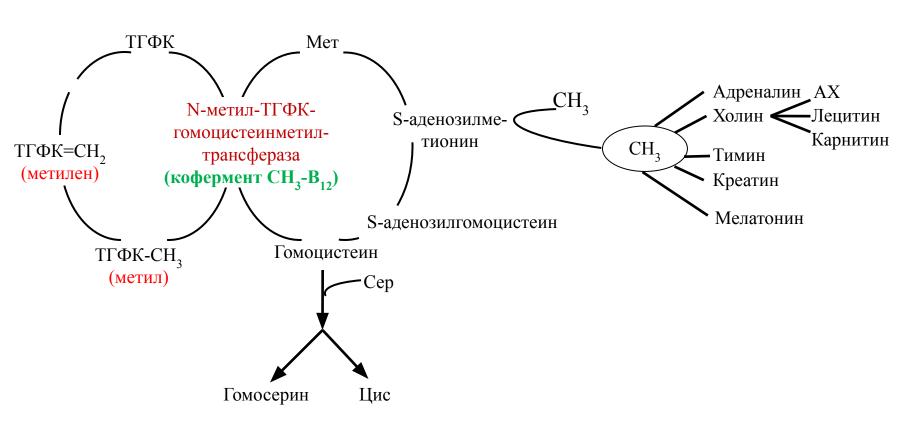
биологически активных веществ, называемых кобаламинами биологически активных веществ, называемых кобаламинами. К ним относят собственно цианокобаламин гидроксикобаламин и

TRA KOMONMOUTUL IO MANMIT

Основные продукты, содержащие витамин В12

Синтез: исключительно микроорганизмами животных и рыб:

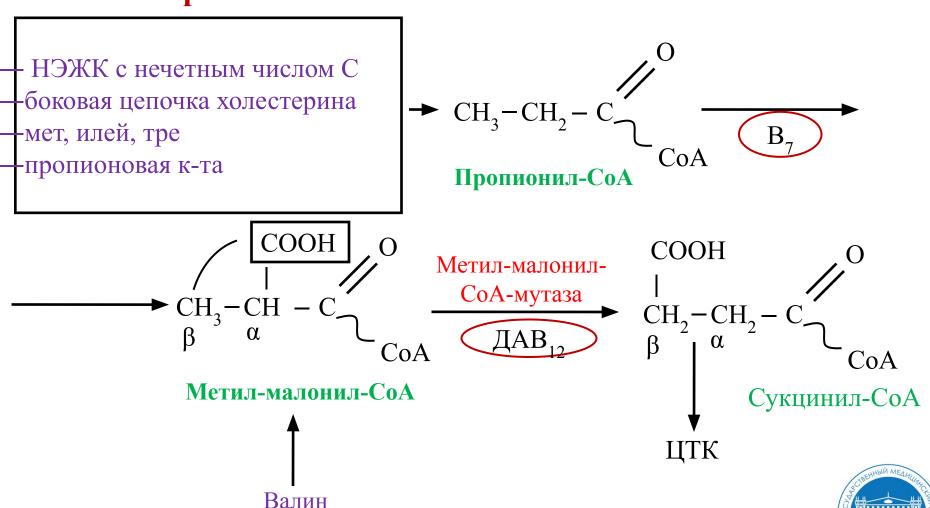
- •мясные продукты (особенно печень, почки);
- •рыба;
- •сыр;
- •микрофлорой кишечника человека может синтезироваться в небольших количествах, исходя из суточной потребности.


Участие витамина В₁, в метаболизме

Коферменты: 5-дезоксиаденозилкобаламин (ДA_{R12}), метилкобаламин (B_{12} -CH₃)

1. Активация фолиевой кислоты (ТГФК-СН₃ + В₁₂ →

$$(T\Gamma\Phi K-CH_3 + B_{12})$$


TΓΦΚ + B₁₂-CH₃

Участие витамина В₁₂ в метаболизме

2. Обмен пропионил - СоА

Гиповитаминоз кобаламина

Кобаламин необходим для нормального функционирования фолиевой кислоты (активация) и если будет не хватать кобаламина, то может развиваться вторичный гиповитаминоз фолиевой кислоты и провляться это будет развитием мегалобластической анемией Аддисона-Бирмера.

Если организм хорошо обеспечен фолиевой кислотой, то развивается фуникулярный миелоз, характеризующийся дегенеративным поражением нервной ткани (полиневриты, парестезии, нарушение чувствительности, мышечные боли, слабость, психические расстройства). Это связано с накоплением метил-малонил-КоА, включением его в жирные кислоты с образование кислот с разветвленной углеродной цепью и включением последних в сфингомиелины с аномальными физико-химическими свойствами.

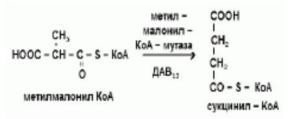
Гипервитаминоз кобаламина

Практически не бывает, хорошо переносится, но следует с осторожность применять:

- •при онкологических заболеваниях;
- •при склонности к повышенной свертываемости крови;
- •могут быть аллергические проявления.

Врожденные нарушения обмена В

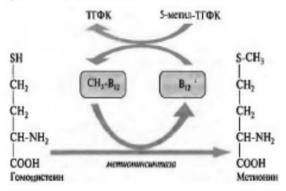
Название болезни	Причина нарушения	Признаки нарушения	Лечение
В ₁₂ зависимая анемия	Нарушение всасывания (синтез мукополисахарида – внутреннего фактора), транспорта (ТК-1, ТК-2)	Анемия	Мегавитаминоте- рапия
Метилмалонат- ацидемия	Дефект фермента метил-малонил-СоА-мутазы: 1. Коферментная форма — нарушено превращение B_{12} в ДА- B_{12} 2. Апоферментная форма — нарушение синтеза апофермента	Развитие кетоацидоза, задержка роста, психического развития. Биохимия: накопление в крови пропионовой кислоты, метил-малонил-СоА, тромбоцитопения, лейкоцитопения	Ограничение белка; Симптоматичес- кое лечение; Мегавитамино- терапия.



Биохимические функции витамина В12 (кобаламин)

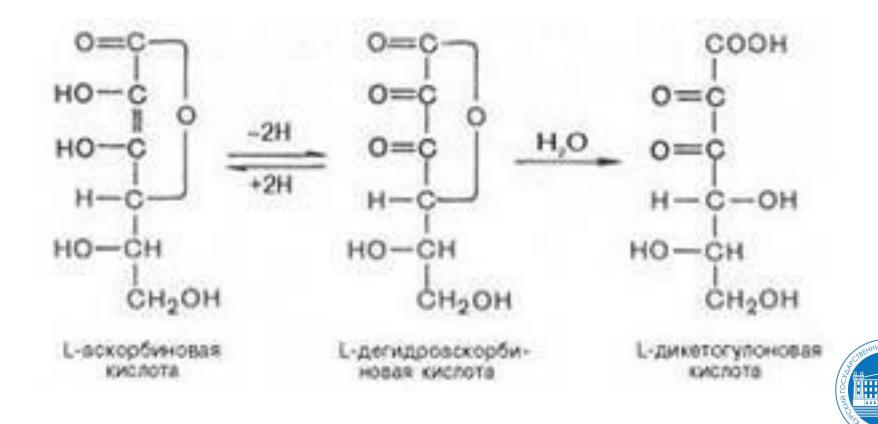

Кофермент – метилкобаламин, 5-дезоксиаденозилкобаламин

1)Обмен жирных кислот с нечетным числом углеродных


атомов

3) Путь образования дезоксирибонуклеотидов

2)Синтез метионина



4)Активация фолиевой кислоты фермент:Метил-ТГФК-редуктаза

TFOK-CH₃+B₁₂
$$\longrightarrow$$
 TFOK+B₁₂-CH₃

Биологически активен только один из изомеров — *L*-аскорбиновая кислота, который называют витамином *C*.

Основные продукты, содержащие витамин С

Наиболее распространенный и требуемый по суточной дозе витамин:

- овощи (особенно лук, перец, капуста, укроп, хрен, горох);
- -фрукты (особенно смородина, малина, шиповник, клюква, клубника);
- -продукты животного происхождения (особенно печень, почки).

Содержание витамина в продуктах растительного происхождения зависит от многих условий (агротехника, удобрения, почва, климат).

Участие аскорбиновой кислоты в метаболизме

1. Процессы гидроксилирования:

- три окситриптофан серотонин
- фен тир тир тормоны (катехоламины, щитовидной железы)

2. Оптимизация тканевого дыхания, окислительно-восстановительных процессов;

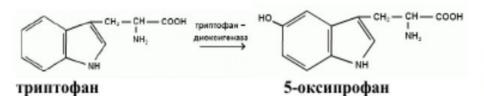
4. Бактериостатическое действие.

Гиповитаминоз витамина С

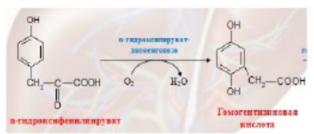
Первые проявления: слабость, апатия, повышенная восприимчивость к простудным заболеваниям, снижение жизненного тонуса, кровоточивость десен при чистке зубов.

Заболевание – цинга (скорбут)

Геморрагические явления:


- •кровоточивость десен, синяки при ушибах, щипках, ударах незначительных;
- •кровотечения внешние (носовые, ушные, из ран);
- •геморрагический диатез;
- •кровотечения внутренние.

ГИПЕРВИТАМИНОЗ


Хорошо переносится, но осторожное применение при повышенной свертываемости крови и тромбофлебитах.

Биохимические функции Витамина С (Аскорбиновая кислота)

1. Реакция гидроксилирования триптофана

4. Реакция гидроксилирования парагидроксифенилпирувата

п-гидроксифенилпируват

гомогентизиновая кислот

2. Реакция гидроксилирования пролина при синтезе коллагена

пролин

гидроксипролин

5. Реакция расщепления ароматического кольца гомогентизиновой кислоты

гомогентизиновая кислота

фумарилацетоацетат

3. Реакция гидроксилирования лизина при синтезе коллагена

лизин гидроксилизин

6. Реакция гидроксилирования дофамина

дофамин

норадреналин

7. Участие аскорбиновой кислоты в обмене железа

