БЕРНАЦКИЙ АНАТОЛИЙ ФИЛИППОВИЧ

Д-Р ТЕХН. НАУК, ПРОФЕССОР КАФЕДРЫ СТРОИТЕЛЬНОГО ПРОИЗВОДСТВА **Н2Уади**

ОСНОВНЫЕ СВОЙСТВА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

- **2 группы строительных** материалов
- 1 группа конструкционные материалы
- **2 группа материалы** специального назначения, необходимые для защиты конструкций от вредных воздействий среды, а также для повышения эксплуатационных свойств и

Конструкционные материалы

- 1) природные каменные материалы;
- 2) неорганические и органические вяжущие вещества;
- 3) искусственные каменные материалы:
- а) получаемые на основе вяжущих веществ (бетоны, железобетон, строительные растворы);
- б) получаемые термической обработкой минерального сырья (керамические материалы и изделия, стекло, ситаллы);
- 4) металлы (сталь, чугун, алюминий, сплавы);
- 5) полимеры;
- 6) древесные материалы;
- 7) композиционные материалы (асбестоцемент, бетонополимер, фибробетон, стеклопластики и др.)

Материалы специального назначения

- 1) теплоизоляционные;
 - 2) акустические;
 - 3) гидроизоляционные, кровельные и герметизирующие;
 - 4) отделочные;
 - 5) антикоррозионные;
 - 6) огнеупорные;
 - 7) материалы для защиты от радиационных воздействий

Свойствами называют способность материалов определенным образом реагировать на воздействие отдельных или совокупных внешних или внутренних силовых, усадочных, тепловых и других факторов

- 2 группы свойств: •
- -эксплуатационно-технические,
- -эстетические.
 - 4 группы эксплуатационно-технических свойств:
- физические,
- механические,
- химические,

Механические свойства

определяют способность материала сопротивляться действию внешних механических сил, вызывающих сжатие, растяжение, изгиб, срез, кручение, истирание

Химические свойства характеризуют способность материала к химическим превращениям под влиянием веществ, с которыми данный материал находится в соприкосновении, а также способность сохранять постоянным состав и структуру материала в условиях окружающей среды

Технологические свойства

• способность материала к восприятию определенных технологических операций, выполняемых с целью изменения его формы, размеров, характера поверхности, плотности и пр. Они определяются в числовых или визуальных показателях по способности к их формуемости (жесткие, пластичные и литые смеси), раскалываемости, шлифуемости, полируемости, гвоздимости, дробимости и др.

Физические свойства

• Средняя плотность - масса единицы объема материала в естественном состоянии (вместе с порами)

$$\rho_{\rm m} = {\rm m/v}$$
, ${\rm s/cm^3}$, ${\rm ks/dm^3}$

- У стеклопора 10...20 кг/м³,
- У газобетона 250...1200 кг/м³,
- У обычного (тяжелого) бетона 2200...2500 кг/м³
- Истинная плотность масса единицы объема однородного материала в абсолютно плотном состоянии, т.е. без учета пор, трещин или пустот

Пористость – степень заполнения объема материала порами

- гранит, базальт 0,2...0,8 %;
- теплоизоляционный кирпич, пенобе- тон - до 75...85 %;
- поропласты, стеклопор выше 90...95 %

$$\Pi = \frac{\rho - \rho_o}{\rho} \quad 100\%$$

Водопоглощение – способность материала впитывать и удерживать воду. Она выражается или степенью заполнения объема материала водой (водопоглощение по объему В_V) или отношением количества поглощенной воды к массе сухого материала (водопоглощение по массе В_С).

$$B_m = \frac{m_2 - m_1}{m_1}$$
 100, %

$$B_V = \frac{m_2 - m_1}{V} = 100, \%$$

$$\frac{B_m}{B_V}$$
 ρ_0

Водопоглощение по массе:

- -глиняного кирпича 8...20 %, -керамических плиток не более 2 %, тяжелого бетона около 3 %,
 - Гигроскопичность— это физический процесс поглощения (сорбции) материалом водяных паров из воздуха

Влагоотдача – способность материала отдавать влагу в **Сиружанов среду**ание (капиллярная диффузия) – частный вид водопоглощения, наблюдающийся для материалов с узкими капиллярами, по которым за счет сил поверхностного натяжения воды происходит ее поднятие на определенную высоту при соприкосновении материала с оверхностью вол

Усадкой (усушкой) называют уменьшение объема и размеров материала при его высыхании

Древесина (поперек	
волокон)30)100
Ячеистый	
бетон	13
Строительный	
раствор	0,51
Кирпич	
глиняный	0,030,1
Тяжелый	
60-011	02 07

Водостойкость - способность материала сохранять в той или иной мере свои прочностные свойства при увлажнении. Водостойкость характеризуется коэффициентом размягчения (Кразм) – отношением предела прочности при сжатии материала в насыщенном водой состоянии (R_в) к пределу прочности при сжатии в сухом состоянии (R_{сух}) К водостойким относятся строительные материалы, коэффициент размягчения которых составляет больше 0,8, например, гранит, бетон, асбестоцемент и Водонепроницаемость – характеризуется маркой, обозначающей одностороннее гидростатическое давление, при котором образец-цилиндр не пропускает воду в условиях стандартного испытания

Водопроницаемость – способность материала пропускать воду под давлением Морозостойкость – это способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без видимых признаков разрушения и без значительного понижения прочности.

По числу выдерживаемых циклов различают материалы с морозостойкостью Мрз 10, 15, 25, 35, 50, 100, 150, 200

- Тазо- и паропроницаемость способность строительных материалов пропускать через свою толщу газ или пар.
- кирпич строительный 0,34, штукатурка цементно-песчаная – 0,02,
- кровельный рубероид 0,01 л/ч·м

Химическая или коррозионная стойкость -

способность материалов сопротивляться действию кислот, щелочей, растворенных в воде газов и солей.

Теплопроводность – свойство материала передавать через свою толщу теплоту от одной поверхности к другой.

```
ранит - 3,2...3,5 Вт/(мК),
кирпич керамический
0,8...0,85;
бетон тяжелый - 1,0...1,5;
                     -0,06...0,09;
минеральная вата
                    -0,04...0,06
пенополистирол
```

Теплоемкость - способность материала поглощать при нагревании определенное количество тепла. Она оценивается удельной теплоемкостью, которая показывает количество теплоты, необходимое для нагревания 1 кг материала на 1 °C

Каменные материалы - 0,75...0,92, древесина – 2,4...2,7, сталь – 0,5, вода – 4,19 кДж/(кг^{. о}С)

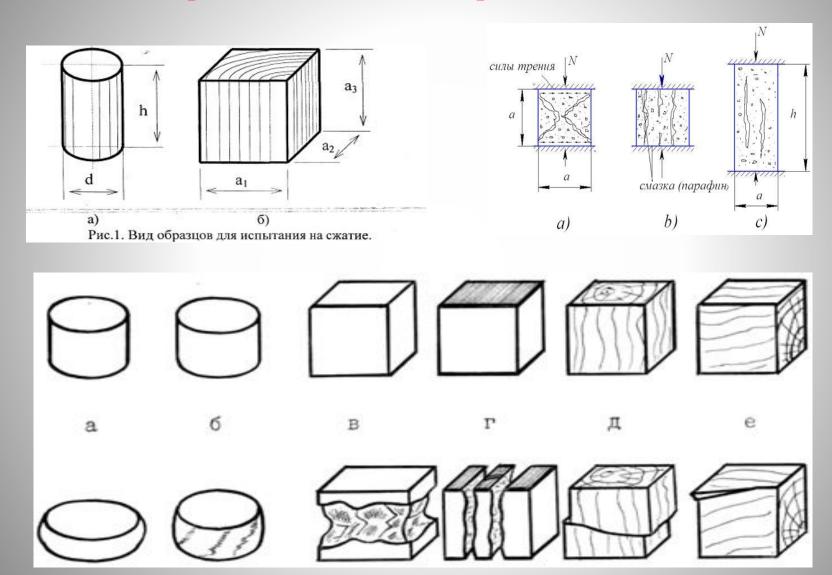
Огнестойкость – способность материала сопротивляться воздействию огня. Материалы делятся на: несгораемые, трудносгораемые и сгораемые

Огнеупорность – свойство материала длительно выдерживать воздействие температуры выше 1580 °С, не размягчаясь и не деформируясьй кость или термостой кость

- способность материала выдерживать чередование (циклы) резких тепловых изменений, нередко с переходом от высоких положительных к низким отрицательным температурам

Звукопоглощение

• Звукопоглощение – способность строительных материалов поглощать звуковые волны.

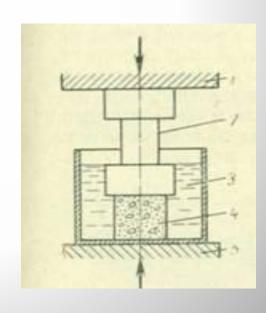

Коэффициент звукопоглощения – отношение количества энергии звуковых колебаний, поглощенной материалом или конструкцией, к общему количеству звуковой энергии, падающей на изолируемую поверхность в единицу времени.

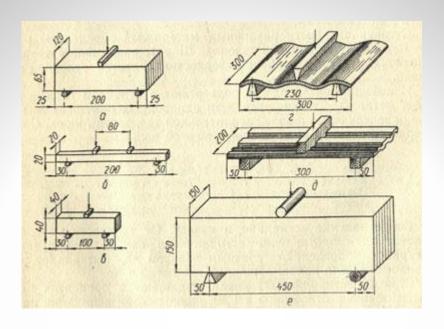
Механические свойства

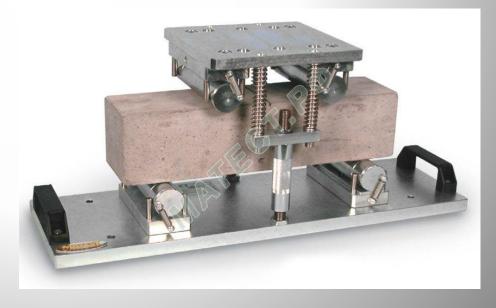
Прочность – свойство материала **сопротивляться** разрушению под действием **внутренних** напряжений, вызванных внешними **силами** или другими факторами (нагрузки, температура и груды прочности

Прочность при сжатии
Прочность при растяжении
Прочность при изгибе
Прочность при кручении
Прочность при сдвиге
Ударная динамическая прочность

Прочность при сжатии

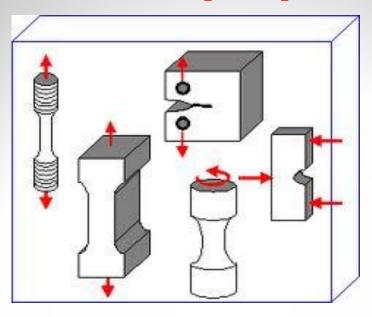

Прочность при сжатии

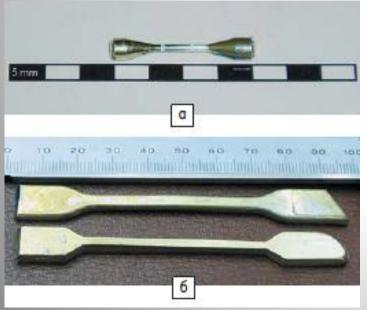


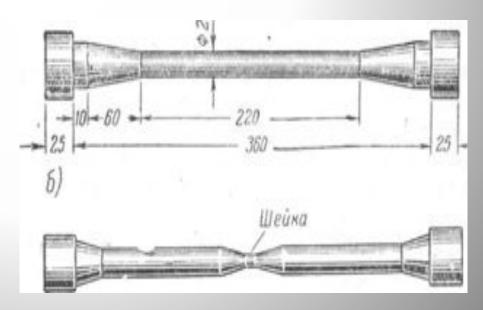


Прочность при изгибе

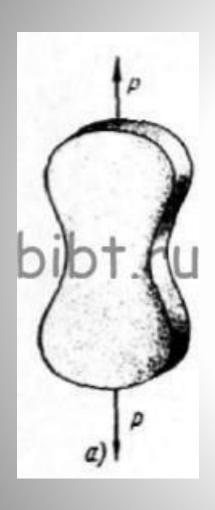
Прочность при сжатии

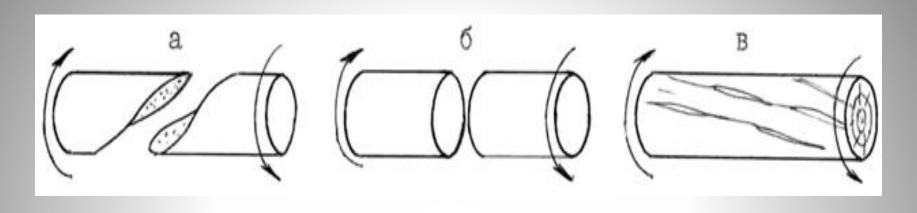

 $R_{cw} = P_{pasp} / S$, где P_{pasp} – разрушающая нагрузка (H, кH, кгс),

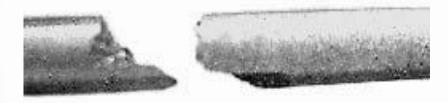

S – площадь поперечного сечения образца $(CM^2).$

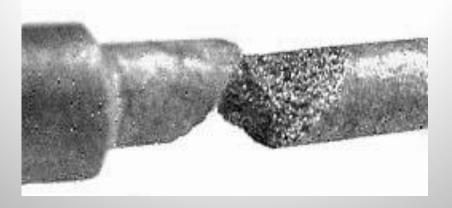

Прочность при изгибе $Rpu = 3PL/2bh^2$

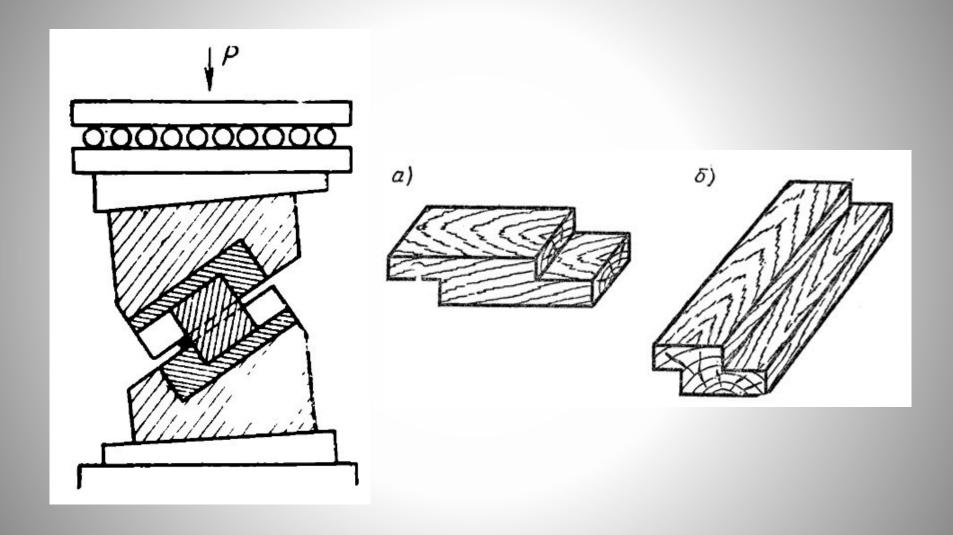
где Р – разрушающая нагрузка, Н (кН); I – пролет балки между опорами, см; **b** и **h** – ширина и высота поперечного сечения образца, см.


Прочность при растяжении


Прочность при растяжении






Прочность при кручении

Прочность при сдвиге

прочность Маятниковый копер

материала уменьшаться в объеме и массе вследствие разрушения поверхностного слоя под действием истирающих усилий

тердость – способность строительного материала сопротивляться прониканию в него постороннего более твердого материала

Коэффициент конструктивного качества (к.к.к.) материала равен отношению показателя прочности R (МПа) к относительной плотности d

Эстетические (декоративно-художественные) свойства

Цвета:

мэтризпэ

ахроматические (белы, черные и серые всех оттенков) хроматические (красные, оранжевые, желтые, зеленые, голувые, синие, фиолетовые со всеми промежуточными оттенками)

Частку видимого спектра относится цвет строительного материала

Насыщенность цвета – степень отличия хроматического цвета от ахроматического той же светлоты

яркостью поверхности строительного

ратура – видимое строение
 поверхности строительного материала,
 характеризуемое рельефом и степенью
 блеска

Рисунок – различные по форме, размеру, расположению, цвету отдельные составные элементы на поверхности строительного материала

Текстура - природный рисунок на поверхности древесины или природного камня

